

### **Review Article**

ISSN: 2454-5023 J. Ayu. Herb. Med. 2022; 8(3): 197-203 Received: 10-07-2022 Accepted: 13-09-2022 © 2022, All rights reserved www.ayurvedjournal.com DOI: 10.31254/jahm.2022.8311

# Review on preclinical and clinical trials of Indian herbal formulation against SARC COV-2

#### Neha Mishra<sup>1</sup>, Shraddha Tripathi<sup>2</sup>, Pragya Mishra<sup>3</sup>, Neetu Mishra<sup>4</sup>

- <sup>1</sup> Department of Food Nutrition and Public Health, ECHS, SHUATS-211007, Prayagraj U.P, India ORCID ID: https://orcid.org/0000-0001-6931-9544
- <sup>2</sup> Department of Home Science, University of Allahabad-211002, Prayagraj U.P, India ORGD ID: <u>https://orcid.org/0000-0003-4559-5944</u>
- <sup>3</sup> Food Processing and Management, DDU KAUSHAL Kendra, RGSC, BHU, Varanasi-221005, U.P, India ORDI ID: https://orcid.org/0000-0003-1612-1424
- <sup>4</sup> Department of Home Science, University of Allahabad-211002, Prayagraj U.P, India
- ORCID ID: https://orcid.org/0000-0002-3146-2465

### ABSTRACT

Mutation of the SARS-CoV-2 spikes protein leads to the appearance of novel variants with modified form that appear to be more transmissible and can escape immunity generated by the vaccine. Continuous mutation in SARC COV and the emergence of more competent variants have sparked alarm for the alternative way to strengthen the immunity and fight corona sustainably. Natural products have been investigated in the last decades to develop novel candidates for drug research. Medicinal plants are considered helpful for preventing and treating several diseases and COVID-19 patients. Thus, this review presents the Indian medicinal plant and its promising active ingredients that exhibit *inhibitory* activity against SARS-CoV-2. The present paper also reviewed the AYUSH recommended formulations and their ingredients routinely used by the Indian population and covid positive patients.

Keywords: AYUSH, COVID-19, Indian Herbs, Medicinal Plants.

### INTRODUCTION

The severe acute respiratory syndrome (SARS) coronavirus-2 has emerged as a novel coronavirus from Wuhan, China, and in a short time, spread across the world <sup>[1]</sup>. It belongs to the family Coronaviridae, designed as COVID-19. On March 11, 2020 it was declared as pandemic by world Health Organization (WHO). Coronavirus is primarily a respiratory illness affecting the lungs and causes a rapid inflammatory response in the body. The clinical symptoms comprise cough, cold, high temperatures, shortness of breath, chest pain, myalgia, diarrhea, altered taste, and confusion which lasts for a few days <sup>[2]</sup>. However, the release of pro-inflammatory cytokines storm caused by systemic inflammatory reactions made it more lethal in some cases due to occurrence acute respiratory distress syndrome (ARDS). Previous studies have reported that 80% of patients are asymptomatically or with minor symptoms, although more critical cases were up to 20% [3]. The high mortality in COVID-19 was seen in patients with compromised immune systems and/or existing underlying conditions such as renal disease, diabetes, obesity, and CVD<sup>3</sup>. The symptoms and severity of the disease vary with the status of the host's immune system. Furthermore, mutation of the SARS-CoV-2 spikes protein leads to the appearance of novel variants which are more communicable or deadlier. It was found that new variants can escape immunity generated by the vaccine. Continuous mutation in SARC COV and the emergence of more competent variants have sparked alarm for the alternative way to strengthen immunity and sustainably fight corona.

A robust immune system helps the body fight the new virus and subside the severity of the disease. Therefore, developing a strong immune system is vital to reducing the death rate. Till date, there is no proper medicinal remedy accessible for this disease. As a defense mechanism the immune system produces immune cells and molecules that may able to differentiate and work to abolish foreign and undesirable micro agents. The modulation of the immune system will modify the immune response, which includes stimulus evoking, expression of response, magnification, or inhibition of any portion or phase of the immuno-modulatory response, which might help reduce the severity of the disease. Therefore, there is an urgent need for potential immune modulators to strengthen the host immune system to fight different new variants of covid. Even in the second wave, medicinal decoction has been used to manage the effect of SARS Cov-2. People around the world were restricted to stay at homes and were advised to include easily accessible medicinal plants decoction in various proportion as part of daily diet with an

#### \*Corresponding author: Dr. Neetu Mishra

Department of Home Science, University of Allahabad-211002, Prayagraj U.P, India Email: neha.alladuniv@gmail.com intension to strengthen the immune system and to reduce the risk of SARS-CoV-2 infection. This might lessen the cases of COVID-19 infection and also initiate a rapid recovery in such cases.

Since the century, India has been an abundant reservoir of medicinal plants used for various infectious diseases. Since prehistoric time medicinal plants have widely been distributed for potential treatment of innumerable infectious and non-infectious diseases. According to an estimate, most commonly used medicine developed, constitutes around 25% of plants derived bioactive compounds. The potential of the plant extracts is to boost the inherent antiviral defense of the human body. Therefore, the present study was conducted to discover potent anti-COVID-19 natural compounds.

### Herbal Bioactive Compounds for the Management of COVID-19

Since the dawn of medicine, the ancient herbal phytomedicine has been used to treat infections. Indian traditional health care system includes Ayurveda, Unani, Siddhi, and Homeopathy, which are among the oldest systems of medical practice in the world. Since immemorial time, it has been well accepted and utilized by the people; they are ignored in health care systems for the last few decades. The global pandemic crisis leads to a paradigm shift toward traditional medicine and improving lifestyles as they are safe and sustainable ways to enhance efficacy for the prophylaxis and treatment of coronavirus infection.

Currently, plant-derived medicinal products have been exploited to check the Effectiveness of this virus and strengthen the world's immunity <sup>[4,5]</sup>. Undeniably, they have the potential to manage a wide array of infections without causing any side effects. Indian medicinal

plants are a reservoir of biologically active compounds that might help defeat viral infections and their transmission. Isolation, identification, and characterization provide a new approach to combating such deadly infections.

Novel antiviral compounds are developed through utilizing medicinal plants and purified natural componants. Saikosaponins, triterpene glycosides which is a naturally occurring bioactive compounds isolated from various medicinal plants like Bupleurum spp., Heteromorpha spp., and Scrophularia revealed excessive antiviral activity against human coronaviruses [6]. These compounds of natural origin efficiently help to prevent the initial phases of coronavirus infection by affecting viral attachment to the host cell and its penetration. Furthermore, numerous naturally occurring bioactive compounds from plant sources (Isatisindigotica and Torreya Nucifera) such as myricetin, scutellarein and phenolic compounds have been recognized to have inhibition action against coronavirus enzymes (nsP13 helicase and 3CL protease) <sup>[7]</sup>. The aqueous extract from *Houttuynia cordata* has also been known as anti-coronavirus medicine. It has been detected to inhibit the viral 3CL protease and block the viral RNA-dependent RNA polymerase activity, as a consequence exhibiting various antiviral mechanisms against SARS-CoV1 infection [8].

Further 25,000 herbal formulations have been used as folk medication therapies in Ayurveda alone to treat numerous acute and chronic ailments <sup>[9]</sup>. A single AYUSH formulation combines many herbal phytoconstituents that generate a pharmacological effect with minimal side effects <sup>[10]</sup>.

Table 1: Promising active ingredients of Indian Medicinal plant that exhibit in vitro activity against SARS-Cov-2

| Medicinal plant                               | Compounds                                                             | Biological activity                                                                                                   | Reference                                                                         |  |
|-----------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Aloe vera                                     | Aloin                                                                 | H1N1 in MDCK cells and in mice                                                                                        | Huang et al <sup>[11]</sup> .                                                     |  |
| Camellia sinensis                             | Epigallocatechin gallate                                              | High affinity for proteases and NSP 15 endoribonuclease                                                               | Khan <i>et al</i> <sup>[12]</sup> .                                               |  |
| Withaniasomnifera (L.) Dunal<br>(Ashwagandha) | Withaferin, WithanolideM                                              | Antiviral activity against spike protein of SARC-<br>CoV-2                                                            | Straughn and Kakar <sup>[13</sup><br>Khanal <i>et al</i> <sup>[14]</sup> .        |  |
|                                               | Withaferin A                                                          | binding affinity to ACE2 protein and main protease (MPro)                                                             | Cai <i>et al</i> <sup>[15]</sup> . Straugh<br>and Kakar <sup>[13]</sup> .         |  |
|                                               | Withanolide I, Withanolide G                                          | 3 CL protease                                                                                                         | Khanal <i>et al</i> <sup>[14]</sup> .                                             |  |
|                                               | WithanoneWithanolide A                                                | ACE2–RBD interface                                                                                                    | Balkrishna <i>et al</i> <sup>[16]</sup><br>Muhseen <i>et al</i> <sup>[17]</sup> . |  |
| Silybum marianum                              | Silybin                                                               | Act on Spike glycoproteins, main protease (M <sup>opar</sup> )<br>and RNA depended RNA polymerase (RdR <sub>p</sub> ) | Pandit <sup>[18]</sup> .                                                          |  |
| Ginkgo biloba                                 | Ginkgolic acids                                                       | anti-influenza virus activity                                                                                         | Borenstein et al [19].                                                            |  |
|                                               | Ginkgolide A, Terpenoids                                              | High affinity with proteases                                                                                          | Shaghaghi <sup>[20]</sup> .                                                       |  |
| Tinospora cordifolia (Guduchi)                | Berberine                                                             | Act on 3 CL protease                                                                                                  | Chowdhury <sup>[21]</sup> . Shre<br>et al <sup>[22]</sup> .                       |  |
|                                               | Cordioside and other constituents                                     | High binding affinity to ACE2 protein and main protease (MPro)                                                        | Jena <i>et al</i> <sup>[23]</sup> .                                               |  |
|                                               | Tinocordiside                                                         | High binding affinity to main protease (MPro)                                                                         | Shree et al <sup>[24]</sup> .                                                     |  |
| Phyllanthus Emblica (Amalaki)                 | Phyllaemblicin B Phyllaemblinol                                       | Antiviral via Helicase inhibitors against hepatitis virus                                                             | Ott <i>et al</i> <sup>[24]</sup> .                                                |  |
|                                               | Phyllaemblicin G7                                                     | Antiviral via Inhibiting the enzyme activity of TMPRSS2                                                               | llona <i>et al</i> <sup>[25]</sup> .                                              |  |
|                                               | Phyllaemblicin G7                                                     | High binding affinity to ACE2 protein and main protease (MPro)                                                        | Kothandan <i>et al</i> <sup>[26]</sup> .                                          |  |
| Ocimum sanctum (Tulsi)                        | Vicenin, Isorientin 4'-O-glucoside<br>2"-O-p-hydroxybenzoate, Ursolic | High binding affinity to ACE2 protein and main protease (MPro)                                                        | Shree <i>et al</i> <sup>[22]</sup> .                                              |  |

|                                                      | acid                                                                                            |                                                                                                                                                             |                                               |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                                      | Tulsinol, dihydroeugenol                                                                        | Anti                                                                                                                                                        | Ghoke <i>et al</i> <sup>[27]</sup> .          |
| Citrus sp.                                           | Essential oils, pectins, naringin and hesperidin (flavonoids)                                   | Binds with high affinity to cellular receptors of SARS-CoV-2 that restrain the pro-inflammatory overreaction of the immune system.                          | Meneguzzo <i>et al</i> <sup>[28].</sup>       |
|                                                      | Hispidin, lepidine E, and folic acid                                                            | Inhibition of 3CL hydrolase enzyme responsible to counterac the host innate immune response and elucidate the main interactions in inhibitor-enzyme complex | Serseg et al <sup>[29]</sup> .                |
|                                                      | Hesperidin, Rutin, Diosmin                                                                      | Inhibitory action against SARS-CoV-2 main protease (M <sup>opar</sup> ).                                                                                    | Adem <i>et al</i> <sup>[30]</sup> .           |
| Curcuma longa (Turmeric)                             | Curcumin                                                                                        | 3 CL protease                                                                                                                                               | Vajragupta <i>et al</i> [31].                 |
|                                                      | Curcumin                                                                                        | Antivirus activity against H1N1 in silico study;                                                                                                            | Richart et al [32].                           |
|                                                      | Curcumin; 50 mg/kg body weight                                                                  | Acute Respiratory Distress syndrome; in vivo study                                                                                                          | Avasarala <i>et al</i> <sup>[33]</sup> .      |
| Glycyrrhiza glabra L.<br>(Yashtimadhu)               | Glycyrrhizin                                                                                    | Inhibit SARS-CoV replication                                                                                                                                | Hoever <i>et al</i> <sup>[34]</sup> .         |
| Piper longum L. (Pippali)                            | Piperolactam A                                                                                  | binding affinity to ACE2 protein and main protease (MPro)                                                                                                   | Kothandan <i>et al</i> <sup>[26]</sup> .      |
| Embeliaribes (Vidang)                                | Embelin                                                                                         | High binding affinity to ACE2 protein and main protease (MPro)                                                                                              | Caruso <i>et al</i> <sup>[35]</sup> .         |
| Ocimumtenuiflorum (Tulsi)                            | Apigenin                                                                                        | Antiviral activity against H1N1 in silico study;                                                                                                            | Alhazmi <sup>[36]</sup> .                     |
| Zingiber officinale (Ginger)                         | 6-Gingerol                                                                                      | HRSV strain in HEp-2 and A549 cell lines;                                                                                                                   | Chang, et al <sup>[37]</sup> .                |
|                                                      | 6-Gingerol                                                                                      | Binding potential with active residues of ACE2 that mediate host viral interface.                                                                           | Dhanasekaran and<br>Pradeep <sup>[38]</sup> . |
|                                                      | Gingerol                                                                                        | SARS-CoV-2 papain-like protease (PLpro) inhibitors.                                                                                                         | Goswami <i>et al</i> <sup>[39]</sup> .        |
|                                                      | Gingerol                                                                                        | Potential inhibitors of COVID-19 proteases.                                                                                                                 | Srivastava et al [40].                        |
| Nigella sativa                                       | Nigelledine, α-Hederin                                                                          | Inhibitory action of 3CL <sup>pro</sup> /M <sup>opar</sup> proteases,                                                                                       | Bouchentouf and Missoum <sup>[41]</sup> .     |
| <i>Psoralea corylifolia</i> (Bawchan seed)           | Bakuchiol,                                                                                      | H1N1 and H3N2 strains in MDCK cell                                                                                                                          | Shoji <i>et al</i> <sup>[42]</sup> .          |
| Betula pubescens                                     | Herbacetin, Isobavachalcone,<br>Quercetin, 3-β-d-glucoside,<br>Helichrysetin and Betulinic acid | Inhibitory bioactive compounds against MERS-CoV<br>3C-like proteases (3CLpro).                                                                              | Jo et al <sup>[43]</sup> .                    |
| Eucalyptus sp.                                       | Jensenone                                                                                       | COVID-19 M <sup>opar</sup> inhibitor                                                                                                                        | Sharma and Kaur <sup>[44].</sup>              |
| Andrographis paniculata Andrographolide<br>(Kariyat) |                                                                                                 | SARS-CoV-2 in silico study;                                                                                                                                 | Enmozhi <i>et al</i> <sup>[45]</sup> .        |

Table 2: Promising crude extracts from Indian Medicinal plant for the treatment of SARS-CoV-2 infection

| Medicinal plant              | Part used                  | Dose                  | Mechanism                                 | Reference                             |  |
|------------------------------|----------------------------|-----------------------|-------------------------------------------|---------------------------------------|--|
| Adhatodavasica Nees. (Vasa)  | Aqueous and methanolic     | 10 mg/ml each         | Significant inhibition of plaques in Vero | Chavan <i>et al</i> <sup>[46]</sup> . |  |
|                              | extract of leaves          |                       | cells infected with 100 pfu of HSV1 and   |                                       |  |
|                              |                            |                       | 2 by 100% in methanolic extract while     |                                       |  |
|                              |                            |                       | in aqueous extract by 100% and 86%,       |                                       |  |
|                              |                            |                       | respectively                              |                                       |  |
| Withaniasomnifera (L.) Dunal | Aqueous root extract       | 25 μg/ml              | Antiviral activity against IBD virus by   | Ghoke et al [27].                     |  |
|                              |                            |                       | cytopathic effect reduction assay         |                                       |  |
| Acacia arabica               | leaves extract             |                       | Antiviral activity against Influenza A    | Ghoke et al [27].                     |  |
|                              |                            |                       | virus subtype H9N2 (H9N2)                 |                                       |  |
| Aloe vera                    | Ethanol extract of leaves; | 25 or 250 μg/ml       | H1N1 in MDCK cells;                       | Choi <i>et al</i> <sup>[47]</sup> .   |  |
| Andrographis paniculata      | Ethanolic and aqueous      | 8.2 μg/ml (ethanol    | H5N1strain in MDCK cells                  | Sornpet, et al [48].                  |  |
| (Kariyat,)                   | extract of leaves          | extract), 380.3 μg/ml |                                           |                                       |  |
|                              |                            | (water extract)       |                                           |                                       |  |
| Bergenia ciliata fringed     | Methanolic extract of      | 8 to 10 μg/ml         | H1N1 strain in MDCK and Varo cell         | Rajbhandari et al [49].               |  |
| elephant's ears, Pasanabheda | rhizome                    |                       |                                           |                                       |  |
| (Sanskrit)                   |                            |                       |                                           |                                       |  |
| Cinnamomum cassia            | Nanoparticles of bark      | 50, 100, and          | H7N3 strain in varo cells                 | Fatima et al [50].                    |  |
| (Cinnamon, Dalchini)         |                            | 200 µg/ml             |                                           |                                       |  |
| Curcuma longa (Turmeric,     | Ethanol and water          | 69.3 μg/ml (ethanol   | H5N1 virus infection                      | Sornpet et al [51].                   |  |
| haldi)                       | extracts                   | extract), 142.3 µg/ml |                                           |                                       |  |

|                                        |                                           | (water extracts)             |                                               |                                        |
|----------------------------------------|-------------------------------------------|------------------------------|-----------------------------------------------|----------------------------------------|
|                                        | AgNPs from rhizomes;                      | 0.12 nM and 0.24 nM          | RSV strain in Hep-2 cells                     | Yang et al [52].                       |
| Embeliaribes Burm (False black pepper) | Ethyl acetate extract of<br>Fruit         | 0.2 μg/ml                    | H1N1, H3N2, H5N2 in MDCK cells                | Hossan <i>et al</i> <sup>[53]</sup> .  |
| Glycyrrhiza glabra                     | Ethanol extract                           | 1.70 μg/ml                   | H1N1 strain in MDCK cells;                    | Hossan <i>et al</i> <sup>[53]</sup> .  |
| Syzygiumcumini                         | Aqueous crude extract of leaves and bark; | 1.28 μg/ml and<br>8.69 μg/ml | Antiviral activity against H5N1 in MDCK cells | Sood <i>et al</i> <sup>[55]</sup> .    |
| Zingiber officinale (Ginger)           | Aqueous extract of Fresh ginger rhizomes  | 300 µg/ml                    | HRSV strain in HEp-2 and A549 cell lines;     | Chang et al <sup>[37]</sup> .          |
|                                        | Aqueous extract                           | 10% concentration            | H9N2 strain in embryonated chick eggs         | Rasool et al [56].                     |
| Viscum album (Mistletoe)               | Aqueous extract of leaves;                | 1 μg/ml                      | HPIV2 strain in Varo cells                    | Karagöz <i>et al</i> <sup>[57]</sup> . |

 Table 3: Clinical trial of Indian Herbal formulation against SARC CoV-2 by AYUSH <sup>[58]</sup>.

| Trial registration | Title of the study                             | Study design                  | Sample     | Herbal formulation       | Dose                                      |
|--------------------|------------------------------------------------|-------------------------------|------------|--------------------------|-------------------------------------------|
| CTRI/2020/05/0251  | Study of Ashwagandha tablet on healthy         | Randomized, Parallel-         | 18-68 yrs  | 250 mg Tablet            | 2/d for 1 month                           |
| 66                 | individuals to prevent Covid 19                | Group Trial                   | n=1200     |                          |                                           |
| CTRI/2020/05/0253  | A study to know the effect of Ayurvedic        |                               | 20-60 yrsn | Kirati ktadi Kwath,      | Kirati ktadi Kwath-30                     |
| 41                 | Kwath (KiratiktadiKwath) & Ashwagandha         | Randomized, Parallel-         | = 30       | Ashwagandha churna (5    | ml twice/d for 14 days                    |
|                    | Churna along with yoga exercises in the        | Group Trial                   |            | gm), Yoga exercises (45  | AyushKwath 40 ml/d                        |
|                    | treatment of COVID-19 Positive patients.       |                               |            | min, 2/d), AyushKwath    |                                           |
| CTRI/2020/12/0294  | A clinical trial to study the effect of herbal | Randomized, Parallel-         | 18-60 yrs  | Capsule containing       | 125 mg, twice daily                       |
| 76                 | medicine on enhancing immune function          | Group, Placebo-               | n=120      | standardized extract of  | for 12 weeks                              |
|                    | in COVID recovery patients                     | Controlled Trial,             |            | Aswagandha, Amla &       |                                           |
|                    |                                                |                               |            | Shilajeet,               |                                           |
| CTRI/2021/08/0357  | Comparative study of Ashwagandha for its       | Randomized, Parallel-         | 18 to 50   | Ashwagandha              | 300 mg KSM 66                             |
| 55                 | effect on quality of life in patients during   | Group, Placebo-               | years      | Standardized Extract     | Ashwagandha twice a                       |
|                    | post-COVID19 period                            | Controlled Trial              | n=120      | (KSM66)                  | day for 12 weeks                          |
| CTRI/2020/04/0248  | Clinical research on safety and efficacy of    | Randomized                    | 18-60 yrs, | Polyherbal tablet (500   | Every 3 hours                             |
| 83                 | Zingi Vir-Has an add on therapy in COVID-      | controlled Single             | n-112      | mg)                      | between 6 AM and 9                        |
|                    | 19 patients.                                   | blinded prospective           |            |                          | PM , 10-15days                            |
|                    |                                                | multicentre clinical<br>trial |            |                          |                                           |
| CTRI/2020/05/0254  | A clinical trial to evaluate the Medicinal     | Randomized, double-           | 18-60 yrs, | Tablet (500 mg)          | Every 3 hours                             |
| 34                 | effects of Zing iVir-H as Antiviral therapy    | blind, placebo-               | n=135      | Tablet (500 mg)          | between 6 AM and 9                        |
| 51                 | in COVID-19 patients.                          | controlled prospective        | 11 100     |                          | PM in a given day                         |
|                    |                                                | multicenter trial             |            |                          |                                           |
| CTRI/2020/05/0251  | To study the Effectiveness of herbal           | Randomized, Parallel-         | 18-99 yr,  | Mixtures of herbal       | Thrice in a day                           |
| 61                 | formulation - Aayudh Advance as a              | Group, Active                 | n-120      | extracts and essential   |                                           |
|                    | supplementary treatment for the Corona         | Controlled Trial              |            | oils in water medium     |                                           |
|                    | Virus 2019 (Covid-19) infected patients        |                               |            | with sweetener.          |                                           |
| CTRI/2020/05/0253  | A study to evaluate the effect and safety      | Randomized, Parallel-         | 18-75 yrs, | Purified aqueous extract | 400 mg thrice daily                       |
| 97                 | of a phytopharmaceutical drug in               | Group Trial                   | n=210      | of Cocculus hirsutus     | (every 8±1 hours), 10                     |
|                    | treatment of Coronavirus infection             |                               |            | (AQCH) tablets           | days; 30 mins before                      |
|                    |                                                |                               |            |                          | meal                                      |
| CTRI/2020/08/0272  | To observe the effect of Ayurvedic             | Randomized, Parallel-         | 18-75 yrs, | Ashwagandha tablet and   | 2 Tablets 250 mg each                     |
| 24                 | medicine (Ashwagandha and Shunti) for          | Group, Active                 | n=60       | Shunti capsule (dried    | (twice daily)                             |
|                    | the treatment of COVID-19                      | Controlled Trial              |            | rhizome of               |                                           |
|                    |                                                |                               |            | Zingiberofficinale)      |                                           |
| CTRI/2020/09/0280  | Prophylactic study of Ashwagandha and          | Randomized, Parallel-         | 20-69 yrs, | Ashwagandha tablet       | Ashwagandha, 2                            |
| 07                 | HCQ in health care providers                   | Group, Active                 | n=400      | (250 mg) & HCQ tablet    | tablets 2/d for 12                        |
|                    |                                                | Controlled Trial              |            | (400 mg)                 | weeks; HCQ-1. tablet 2/d on Day 1, 400 mg |
|                    |                                                |                               |            |                          | once a week for 7                         |
|                    |                                                |                               |            |                          | weeks                                     |
| CTRI/2021/06/0344  | Enhancing protective action of COVID-19        | Randomized, Parallel-         | 18-45 yrs, | Ashwagandha Tablet 500   | once daily For 24                         |
| 96                 | vaccine by using Ashwagandha                   | Group, Placebo-               | n=         | mg                       | Weeks                                     |
|                    |                                                | Controlled Trial              |            |                          |                                           |
| CTRI/2021/09/0368  | A study on the efficacy of Tulasi-             | Randomized, Parallel-         | 18-65 yrs, | Tulasi-Ashwagandhadi     |                                           |
| 26                 | Ashwagandhadi Herbal Drops on Oxygen           | Group, Placebo-               | n=110      | Herbal Drops             |                                           |
|                    | Saturation (SPO2) in the management of         | Controlled Trial              |            |                          |                                           |
|                    |                                                |                               |            |                          |                                           |

Journal of Ayurvedic and Herbal Medicine | July-September | 2022

| CTRI/2020/05/0252 | Role of Chyawanprash in the prevention    | Randomized, Parallel- | 25-0 yrs,  | Poly Herbal paste        | 12 g twice daily.       |
|-------------------|-------------------------------------------|-----------------------|------------|--------------------------|-------------------------|
| 75                | of COVID-19 in health care workers        | Group Trial           | n=200      |                          |                         |
| CTRI/2020/05/0254 | Ayurvedic intervention (Chyawanprash) in  | Randomized, Parallel- | 20-60 yrs, | Poly Herbal paste        | 12 g twice daily.       |
| 25                | the prevention of COVID-19 pandemic       | Group Trial           | n=50       |                          |                         |
|                   | among Health Care Personnel               |                       |            |                          |                         |
| CTRI/2020/09/0279 | Evaluation of efficacy of Fixed Ayurvedic | Randomized, Parallel- | 18-60 yrs, | Dabur chyawanprash,      | 1 tsp/d for 2 days      |
| 14                | Regimen of Giloy Ki GhanVati, Tulsi       | Group Trial           | n=72       | Giloy ki Ghanvati, Tulsi |                         |
|                   | Tablets, Kalmegh Tablets and Dabur        |                       |            |                          |                         |
|                   | Chyawanprash in COVID-19                  |                       |            |                          |                         |
| CTRI/2020/09/0279 | Clinical Evaluation of Chyawanprash for   | Randomized, Parallel- | 18-60 yrs, | Poly Herbal paste        | 12 gm twice daily       |
| 74                | the prevention of COVID-19 among Health   | Group Trial           | n=200      |                          |                         |
|                   | Care Personnel                            |                       |            |                          |                         |
| CTRI/2021/10/0374 | Effect of chyawanprash on immune          | Randomized, Parallel- | 25-60 yrs, | Poly Herbal paste        | 12 gm with warm         |
| 79                | system when administered after covid-19   | Group, Active         | n=100      |                          | water for 3 months      |
|                   | vaccination in health care personnel      | Controlled Trial      |            |                          |                         |
| CTRI/2020/05/0250 | Ayurvedic Interventions in prevention of  | Single Arm Study      | 18-70 yrs, | ShanshamaniVati          | 2/d for 15 days         |
| 69                | COVID-19 infection-A survey study         |                       | n=9200     | (500 mg) or Sudarshana   |                         |
|                   |                                           |                       |            | Ghanavati (250 mg) or    |                         |
|                   |                                           |                       |            | Ashwagandha (250 mg)     |                         |
| CTRI/2020/05/0250 | Study of GUDUCHI TABLET on healthy        | Randomized, Parallel- | 18-68 yrs, | Guduchi tablet (500mg)   | 2/d for one month       |
| 88                | individuals to prevent covid 19.          | Group Trial           | n=1200     |                          |                         |
| CTRI/2020/05/0252 | Ayurveda formulation for COVID-19         | Single Arm Study      | 18-70 yrs, | Guduchighanvati          | 2/d for 30 days         |
| 13                | prevention                                |                       | n=1500     | (500 mg)                 |                         |
| CTRI/2020/06/0257 | A prophylactic interventional study to    | Non-randomized,       | 18-80 yrs, | Polyherbal formulation-  | Kabasurakudineer        |
| 69                | determine the possible protective effect  | Multiple Arm Trial    | n=40,000   | KabasuraKudineer         | (5- 10g) boiled with    |
|                   | of Siddha Polyherbal formulation          |                       |            |                          | 240ml of water will be  |
|                   | Kabasura Kudineer against the COVID 19    |                       |            |                          | reduced to 60 ml        |
|                   | on intermittent, month-long consumption   |                       |            |                          | filtered                |
|                   | by public with close contacts to COVID    |                       |            |                          |                         |
|                   | patients and frontline workers in Tamil   |                       |            |                          |                         |
|                   | Nadu, India                               |                       |            |                          |                         |
| CTRI/2020/06/0257 | Study of Ayush Kwath in quarantine        | Single Arm Study      | 20-60 yrs, | AyushKwath               | 3 gmwith 150 m          |
| 79                | persons                                   |                       |            | (Tulasi+Dalchini+ginger+ | warm water twice        |
|                   |                                           |                       |            | Piper nigrum)            | day                     |
| CTRI/2020/07/0265 | Role of Herbal Immunomodulators in        | Randomized, Parallel- | 18-60 yrs, | Herbal Formulations      | 1 tablet twice daily    |
| 79                | Boosting the Immunity among healthcare    | Group, Active         | n=100      | (Tab. Immusante and      | orally (BD) for 30 days |
|                   | workers assigned to COVID-19 wards        | Controlled Trial      |            | Tab. Guduchi)            |                         |
| CTRI/2020/07/0266 | Effect of Ayurveda Spice Mix Tablet for   | Randomized, Parallel- | 18-75      | Ayurveda Spice           | Thrice a day            |
| 74                | the Prevention of COVID-19 infection in   | Group, Active         | years,     | mix tablet (500 mg)      |                         |
|                   | people exposed to Covid 19 and in high    | Controlled Trial      | n=130      |                          |                         |
|                   | risk patients                             |                       |            |                          |                         |
| CTRI/2020/07/0268 | Curcumin for COVID-19 Pre Exposure        | Randomized, Parallel- | 18-70 yrs  | Oral Curcumin capsule    | twice daily for 12      |
| 20                | Prophylaxis                               | Group, Placebo-       |            | (500 mg)                 | weeks                   |
|                   |                                           | Controlled Trial      |            |                          |                         |

### CONCLUSION

The use of herbal medicine is a potential platform for management of COVID-19 virus. Herbal medicine and its bioactive fractions are found to have potential preventive candidate and as supportive measures through boosting the immune system. The Clinical evidence of the potential traditional AYUSH medicines and recommendations for treatment of SARS coronavirus (SARS-CoV) infections has shown significant results, and reinforced the awareness regarding use of herbal medicine as potential agent with beneficial effect in the treatment and management of Covid 19 disease.

### Acknowledgment

The authors thank the support of lab technicians, teaching faculties and students.

### **Conflict of Interest**

None declared.

### **Financial support**

None declared.

## REFERENCE

- Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J Med Virol. 2020;92(4):401-40
- Lei L, Huang X, Zhang S, Yang J, Yang L, Xu M. Comparison of prevalence and associated factors of anxiety and depression among people affected by versus people unaffected by quarantine during the COVID-19 epidemic in Southwestern China. Medical science monitor: international medical journal of experimental and clinical research. 2020;26:e924609-1.

- Alberici F, Delbarba E, Manenti C, Econimo L, Valerio F, Pola A, *et al*. A single center observational study of the clinical characteristics and shortterm outcome of 20 kidney transplant patients admitted for SARS-CoV2 pneumonia. Kidney international. 2020;97(6):1083-8.
- Nikhat S, Fazil M. Overview of Covid-19; its prevention and management in the light of Unani medicine. Science of the total Environment. 2020;728:138859.
- Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y, *et al*. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine. 2020;8(5):475-81.
- Cheng PW, Ng LT, Chiang LC, Lin CC. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clinical and Experimental Pharmacology and Physiology. 2006;33(7):612-6.
- 7. Kim CH. Anti–SARS-CoV-2 natural products as potentially therapeutic agents. Frontiers in pharmacology. 2021:1015.
- Lau KM, Lee KM, Koon CM, Cheung CS, Lau CP, Ho HM, et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. Journal of ethnopharmacology. 2008;118(1):79-85.
- 9. Pundarikakshudu K, Kanaki NS. Analysis and regulation of traditional Indian medicines (TIM) J. AOAC Int. 2019;102(4):977–78.
- Parasuraman S, Thing GS, Dhanaraj SA. Polyherbal formulation: concept of ayurveda. Pharm. Rev. 2014;8(16):73.
- 11. Huang CT, Hung CY, Hseih YC, Chang CS, Velu AB, He YC, *et al.* Effect of aloin on viral neuraminidase and hemagglutinin-specific T cell immunity in acute influenza. Phytomedicine. 2019;64:152904.
- Khan AA, Bashir F, Akhtar J. TIRYAQ E ARBA: A classical Unani Formulation to boost immunity. Journal of Drug Delivery and Therapeutics. 2020;10(4):259-63.
- 13. Straughn AR. Kakar SS. Withaferin A: a potential therapeutic agent against COVID-19 infection. Journal of Ovarian Research, 2020;13(1):1-5.
- 14. Khanal P, Chikhale R, Dey YN, Pasha I, Chand S, Gurav N, *et al.* Withanolides from Withania somnifera as an immunity booster and their therapeutic options against COVID-19. Journal of Biomolecular Structure and Dynamics. 2022;40(12):5295-308.
- 15. Cai Z, Zhang G, Tang B, Liu Y, Fu X, Zhang X, *et al.* Promising anti-influenza properties of active constituent of Withania somnifera ayurvedic herb in targeting neuraminidase of H1N1 influenza: computational study. Cell biochemistry and biophysics. 2015;72(3):727-39.
- Balkrishna A, Pokhrel S, Singh J, Varshney A: Withanone from Withania somnifera may inhibit novel coronavirus (COVID-19) entry by disrupting interactions between viral S-protein receptor binding domain and host ACE2 receptor. In. Research Square. 2020.
- Muhseen ZT, Hameed AR, Al-Hasani HMH. Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: integrated computational approach. J Mol Liq. 2020;320:114493.
- Pandit M, Latha N. In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection. 2021;341:109449.
- Borenstein R, Hanson BA, Markosyan RM, Gallo ES, Narasipura SD, Bhutta M, et al. Ginkgolic acid inhibits fusion of enveloped viruses. Scientific reports. 2020;10(1):1-2.
- 20. Shaghaghi N. Molecular docking study of novel COVID-19 protease with low risk terpenoides compounds of plants. 2020.
- Chowdhury P. In silico investigation of phytoconstituents from Indian medicinal herb "Tinospora cordifolia (giloy)" against SARS-CoV-2 (COVID-19) by molecular dynamics approach. J Biomol Struct Dyn. 2020:1–18.
- Shree P, Mishra P, Selvaraj C, Singh SK, Chaube R, Garg N, et al. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - a molecular docking study. J Biomol Struct Dyn. 2020:1–14.

- Jena S, Munusami P, Mm B, Chanda K. Computationally approached inhibition potential of Tinospora cordifolia towards COVID-19 targets. Virus Disease. 2020;32:65–77.
- Ott M, Manns MP, inventors; Manns Michael P, assignee. Use of Phyllanthus constituents for treating or preventing infections caused by hepatitis B-viruses. United States patent US 7,829,124. 2010 Nov 9.
- Ilona G, Stephanie B, Müller AM. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. 2011;85:4122–34.
- Kothandan R, Rajan CASG, Arjun J, Raj RRM, Syed S. Virtual screening of phytochemical compounds as potential inhibitors against SARS-CoV-2 infection. Beni-Suef Univ J Basic Appl Sci. 2021;10(1):1-7.
- Ghoke SS, Sood R, Kumar N, Pateriya AK, Bhatia S, Mishra A, et al. Evaluation of antiviral activity of Ocimum sanctum and Acacia arabica leaves extracts against H9N2 virus using embryonated chicken egg model. BMC complementary and alternative medicine. 2018;18(1):1-0.
- 28. Meneguzzo F, Ciriminna R, Zabini F, Pagliaro M. Hydrodynamic cavitationbased rapid expansion of hesperidin-rich products from waste citrus peel as a potential tool against COVID-19.
- Serseg T, Benarous K, Yousfi M. Hispidin and Lepidine E: two Natural Compounds and Folic acid as Potential Inhibitors of 2019-novel coronavirus Main Protease (2019-nCoVMpro), molecular docking and SAR study. Current computer-aided drug design. 2021;17(3):469-79.
- Adem S, Eyupoglu V, Sarfraz I, Rasul A, Ali M. Identification of potent COVID-19 main protease (Mpro) inhibitors from natural polyphenols: an in silico strategy unveils a hope against CORONA. 2020
- Vajragupta O, Boonchoong P, Morris GM, Olson AJ. Active site binding modes of curcumin in HIV-1 protease and integrase. Bioorg Med Chem Lett. 2005;15:3364-68.
- Richart SM, Li Y-L, Mizushina Y, Chang YY, Chung TY, Chen GH, et al. Synergic effect of curcumin and its structural analogue (Monoacetylcurcumin) on anti-influenza virus infection. J food drug Anal. 2018;26:1015–1023.
- Avasarala S, Zhang F, Liu G, Wang R, London SD, London L, et al. Correction: Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome. Plos one. 2015;10(8):e0134982.
- Hoever G, Baltina L, Michaelis M, Kondratenko R, Baltina L, Tolstikov GA, et al. Antiviral activity of glycyrrhizic acid derivatives against SARScoronavirus. J Med Chem. 2005;48:1256-59.
- 35. Caruso F, Rossi M, Pedersen JZ, Incerpi S. Computational studies reveal mechanism by which quinone derivatives can inhibit SARSCoV-2. Study of embelin and two therapeutic compounds of interest, methyl prednisolone and dexamethasone. J Infect Public Health. 2020;13:1868-77.
- Alhazmi MI. Molecular docking of selected phytocompounds with H1N1 Proteins. Bioinformation, 2015, 11(4):196-202.
- San Chang J, Wang KC, Yeh CF, Shieh DE, Chiang LC. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of ethnopharmacology. 2013;145(1):146-51.
- Dhanasekaran S, Pradeep PS. Scope of phytotherapeutics in targeting ACE2 mediated Host-Viral Interface of SARS-CoV2 that causes COVID-19. Chem R. 2020.
- Goswami D, Kumar M, Ghosh SK, Das A. Natural Product Compounds in Alpinia officinarum and Ginger are Potent SARS-CoV-2 Papain-like Protease Inhibitors. ChemR. 2020 xiv. Preprint.
- 40. Srivastava AK, Kumar A, Misra N. On the inhibition of COVID-19 protease by Indian herbal plants: An in silico investigation. arXiv preprint arXiv:2004.03411. 2020.
- Bouchentouf S, Missoum N. Identification of Compounds from Nigella Sativa as New Potential Inhibitors of 2019 Novel Coronasvirus (Covid-19): Molecular Docking Study. ChemRxiv. Cambridge: Cambridge Open Engage; 2020; This content is a preprint and has not been peer-reviewed.

- Shoji M, Arakaki Y, Esumi T, Kohnomi S, Yamamoto C, Suzuki Y, *et al.* Bakuchiol is a phenolic isoprenoid with novel enantiomer-selective antiinfluenza A virus activity involving Nrf2 activation. Journal of Biological Chemistry. 2015;290(46):28001-17.
- Jo S, Kim H, Kim S, Shin DH, Kim MS. Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chemical biology & drug design. 2019;94(6):2023-30.
- 44. Sharma AD, Kaur I. Molecular docking studies on Jensenone from eucalyptus essential oil as a potential inhibitor of COVID 19 corona virus infection. arXiv preprint arXiv:2004.00217. 2020 Apr 1.
- Enmozhi SK, Raja K, Sebastine I, Joseph J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. Journal of Biomolecular Structure and Dynamics. 2021;39(9):3092-8.
- Chavan R, Chowdhary A. In vitro inhibitory activity of Justicia adhatoda extracts against influenza virus infection and hemagglutination. Internat. J Pharm Sci Rev Res. 2014;25(2):231-36.
- Choi HJ, Song JH, Bhatt LR, Baek SH. Anti-human rhinovirus activity of gallic acid possessing antioxidant capacity. Phytotherapy Research. 2010;24(9):1292-6.
- Sornpet B, Potha T, Tragoolpua Y, Pringproa K. Antiviral activity of five Asian medicinal pant crude extracts against highly pathogenic H5N1 avian influenza virus. Asian Pacific Journal of Tropical Medicine. 2017;10(9):871-76.
- Rajbhandari M, Mentel R, Jha PK, Chaudhary RP, Bhattarai S, Gewali MB, et al. Antiviral activity of some plants used in Nepalese traditional medicine. Evidence-Based Complementary and Alternative Medicine. 2009;6(4):517-22.
- Fatima M, Zaidi NU, Amraiz D, Afzal F. In vitro antiviral activity of Cinnamomum cassia and its nanoparticles against H7N3 Influenza A virus. J. Microbiol. Biotechnol. 2016;26(1):151-59.
- Singh RS, Singh A, Kaur H, Batra G, Sarma P, Kaur H, *et al.* Promising traditional Indian medicinal plants for the management of novel Coronavirus disease: A systematic review. Phytotherapy Research. 2021;35(8):4456-84.
- Yang XX, Li CM, Huang CZ. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale. 2016;8(5):3040-48.
- Hossan MS, Fatima A, Rahmatullah M, Khoo TJ, Nissapatorn V, Galochkina AV, *et al*. Antiviral activity of Embelia ribes Burm. f. against influenza virus in vitro. Archives of virology. 2018;163(8):2121-31.
- Grienke U, Braun H, Seidel N, Kirchmair J, Richter M, Krumbholz A, *et al.* Computer-guided approach to access the anti-influenza activity of licorice constituents. Journal of natural products. 2014;77(3):563-70.
- 55. Sood R, Swarup D, Bhatia S, Kulkarni DD, Dey S, Saini M, *et al*. Antiviral activity of crude extracts of Eugenia jambolana Lam. against highly pathogenic avian influenza (H5N1) virus. 2012, 50(3):179-86.
- Ahmed I, Aslam A, Mustafa G, Masood S, Ali MA, Nawaz M. Anti-avian influenza virus H9N2 activity of aqueous extracts of Zingiber officinalis (Ginger) and Allium sativum (Garlic) in chick embryos. Pak. J. Pharm. Sci. 2017;30(4):1341-44.
- Karagöz A, Önay E, Arda N, Kuru A. Antiviral potency of mistletoe (Viscum album ssp. album) extracts against human parainfluenza virus type 2 in Vero cells. Phytotherapy Research. 2003;17(5):560-62.
- 58. Retrived from WWW.Clinicaltrial.gov.

#### HOW TO CITE THIS ARTICLE

Mishra N, Tripathi S, Mishra P, Mishra N. Review on preclinical and clinical trials of Indian herbal formulation against SARC COV-2. J Ayu Herb Med 2022;8(3):197-203. DOI: 10.31254/jahm.2022.8311

#### Creative Commons (CC) License-

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. (http://creativecommons.org/licenses/by/4.0/).