

Review Article

ISSN: 2454-5023 J. Ayu. Herb. Med. 2021; 7(2): 93-108 Received: 11-01-2021 Accepted: 01-06-2021 © 2021, All rights reserved www.ayurvedjournal.com DOI: 10.31254/jahm.2021.7208

Effect of Saffron (*Crocus sativus* L) on Common Non-Communicable Disease: Review from Current Clinical Findings

Akibul Islam Chowdhury¹, Mohammad Asadul Habib¹, Susmita Ghosh²

1Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali-3814, Bangladesh

2 Assistant Professor, Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali-3814, Bangladesh

ABSTRACT

Background: Due to the high prevalence of NCDs and treatment costs, many medical providers are looking for alternative medications, especially herbal medicine, and some herbal medicines can be used as an effective therapy for the treatment of NCDs. Many studies have shown the effective use of saffron to impede and treat different types of non-communicable diseases. **Aim:** This current review focuses on the medicinal uses of saffron and current findings relating to the effects of saffron on different types of non-communicable diseases. **Methods:** Cochrane library, Pub Med, and Google Scholar databases were searched from 2000 to 2020 before September to accumulate current findings with the limitation of the English language. **Result:** A total of 33 studies (8 human and 25 animal studies) were identified through searching. Saffron and its active components improved lipid profile along with lowering the risk of cardiovascular disease, hypertension, diabetes, and obesity. Kidney function was also improved by reducing nitrogen urea, urinary citrate, uric acid, etc. Saffron can be also used for treating different types of cancer like prostate cancer, skin cancer, breast cancer, etc. **Conclusion:** Despite the beneficial effects of saffron on non-communicable diseases, more prospective clinical trials among humans and animals are needed for a better understanding of the effects and mechanisms of saffron and its compounds.

Keywords: Saffron, Crocin, Non-communicable Disease, Cardiovascular Disease, Renal Disease, Cancer.

INTRODUCTION

Non-communicable diseases (NCDs) are considered as a major public health issue in both developed and developing countries among all income groups, men, women, and children ¹. Due to changes in lifestyle and climate, the prevalence of NCDs principally heart disease, stroke, diabetes, obesity, cancer, and chronic respiratory disease are increasing worldwide ². The World Health Organization (WHO) reported in 2015 that 40 million deaths all over the world occurred due to NCDs ³, and about 80% of all deaths from NCDs occurred in low-income and middle-income countries. Among all NCDs, cardiovascular diseases (CVDs) caused 1.7 million of these deaths ⁴. There is a problem of equity raised between and within countries due to costly and prolonged treatment of NCDs ⁵.

Due to the high prevalence of NCDs and treatment costs, many medical providers are looking for alternative medications, especially herbal medicine, and some herbal medicines can be used as an effective therapy for the treatment of NCDs ⁶. Various studies reported that Cinnamon, fenugreek, and *Boswellia Serrata* can be used as a medicine for treating NCDs ^{7, 8}.

Saffron, *Crocus sativus* L, belonging to the Iridaceae family is considered as the most expensive spice in the world for its difficult cultivation process, and the value of pure saffron mainly cultivated in Iran, India, Greece, France, Italy, and Spain is as high as gold ^{9, 10}. Although it is generally used for its aroma, color, and taste, it also has some health benefits ¹¹ for its three main chemical components: Crocin, Crocetin and Safranal ¹². It also has other metabolites such as terpenes, flavonoids, anthocyanins, and carotenoids¹³. Crocin, a family of red colored water-soluble carotenoids is considered as the major active component of saffron ¹⁴, and crocetin is an amphiphilic carotenoids compound ¹⁵. Aroma and odor of saffron are due to the presence of a major component of saffron's essential oil called safranal, a monoterapene aldehyde ¹⁶. These chemical components have wide range pharmacological effects from ancient times including antioxidant, anti-inflammatory, anti-tumor, neuroprotective, antihypertensive, antidepressant, anti-anxiety, anti-diabetic, hypoglycemic, hypolipidaemic, and satiety enhancer ^{14, 17}. Evidence from many studies *in vitro* and *in vivo* showed beneficial effects of saffron extract on reducing the risk and treating

*Corresponding author: Susmita Ghosh

Assistant Professor, Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali-3814, Bangladesh *Email:*susmita.ftnsfat1nstu.edu.bd non-communicable disease ¹⁸⁻²⁰. Although many animal studies (mice and rats) showed biological activity of saffron against noncommunicable disease, there was a lack of human studies to examine the efficacy of saffron as an herbal medicine or dietary supplement in individuals with non-communicable diseases. Thus, this review primarily aimed to congregate the current findings related to the effects of saffron (*Crocus sativus* L) and its constituents on the non-communicable diseases.

METHODOLOGY

Search strategy

This review is mainly based on the current published data or information. The major electronic databases and search engines including Cochrane library, Pub Med, and Google Scholar databases were searched from 2000 to 2020 before September to accumulate current findings. The major keywords and their combinations used in search strategy are following: saffron, *Crocus sativus*, crocin, crocetin, safranal, non-communicable disease, cardiovascular disease, cancer, diabetes, obesity, hypertension, blood pressure, blood glucose, toxicity, renal disease, kidney disease, clinical trial, etc. Reference list and reviews were used during the search process. Searches were limited to articles published in the English language.

Study selection and data extraction

Study selection was done following some inclusion and exclusion criteria. The inclusion criteria were: (1) study carried out among animal and human; (2) published in English language; (3) full-text availability; (4) evaluating the effect of saffron and its constituents on non-communicable diseases etc. Studies evaluated the effect of saffron at *in vitro*, published before 2000, reviews and not assess the effect of saffron on non-communicable diseases were excluded.

Quality assessment

The quality of randomized controlled trials (human studies) was measured by following the Jaded scale ²¹. In the present study, five randomized controlled trials were identified. The quality of the animal studies was assessed following standard scale from SYRCLE's risk of bias tool ²² and CAMARADES checklist for study quality "Gold Standard Publication Checklist to Improve the Quality of Animal Studies", published by Radboud University Nijmegen Medical Centre ²³.

RESULT AND DISCUSSION

Characteristics of studies

After completing the searching at different electronic database, a total 33 studies (25 animal studies and 8 human studies) describing the effects of saffron on different non-communicable diseases were included in this review. Among these studies, 7 studies reported the effects of saffron on cardiovascular disease (Table 1), 5 studies on hypertension and cancer each (Table 2 and 4 respectively), 4 studies on renal disease and obesity each (Table 3 and 6 respectively) and 8 studies on diabetes (Table 5).

Methodological quality of studies

The methodological qualities of selected studies were showed in supplementary Table. The average quality score of human studies was 5 according to Jaded scale. For the animal studies, according to the SYRCLE's risk of bias tool, the average point reported by the studies was 15 out of 21 items (64%) whereas the highest point is 19 out of 21 characteristics (4%). When checking the CAMARADES checklist for study quality, it was seen that maximum studies were not included some particular points such as sample size calculation before the experiment, blinding, reasons for exclusion of animals.

Crocus sativusL and non-communicable diseases

All though there are many reports about the effects of saffron and its constituents on non-communicable diseases, there is still very limited information available for the effects of saffron and its constituents on all non-communicable diseases. Saffron and its derivatives particularly crocin, crocetin, and safranal have demonstrated significant biological activities against different types of non-communicable diseases.

Crocus sativus L and cardiovascular disease

Several studies summarize the effects of saffron against cardiovascular disease but there was no possible mechanism about the effects of saffron on cardiovascular disease. The results of the studies showed that saffron and its active compounds improved the lipid profiles which are the main factors for developing cardiovascular disease ²⁴⁻²⁶. A study stated that arrhythmia severity score was lower among the Saf100 group compared with the control group (p<0.05) ²⁷. Evidence from many literature showed that atherosclerotic progression and enhance plaque stability were slow down after saffron supplementation ^{28, 29}. Treatment with saffron extract provides atheroprotection reducing MMP-2/TIMP-2 ratio ³⁰. Another mechanism from some studies reported that saffron has anti-inflammatory effects that initiate pro-inflammatory cytokines release such as MCP-1, IL-6, and TNF- α and destroy plaque stability ³¹⁻³³. Others studies showed that saffron has protective effects on cardiovascular disease due to its anti-inflammatory, antioxidant, hypolipidemic, and anti-depressant effects ^{34, 35}.

Crocus sativus L and hypertension

Antioxidant activity of saffron relaxes smooth muscle and inhibits the release of intracellular calcium supply in the endoplasmic reticulum and intracellular calcium influx which may be related to blood vessel relaxation and showed anti-hypertensive activity ³⁶⁻³⁸. Some studies showed that constituents of saffron especially crocin and crocetin inhibits AngII-induced proliferation and activation of extracellular signal-related protein kinase 1 and 2 which may reduce blood pressure^{39, 40}. Findings from this study stated that saffron and its active components reduced mean systolic blood pressure ^{19, 41}. Another study found that saffron inhibited L-NAME-induced blood pressure and also reduced the aortic cross-sectional areas and the number of elastic lamellae which are increased due to hypertension ⁴².

Table 1: Summary of published data relating to the effect of saffron and its constituents on cardiovascular disease (CVD)

NCDs	Author, country, and	Model	Study design	Subjects	Intervention	Doses used	Duration	Main outcomes	Other findings	Comments
CVD	Shu-Ying He, 2007; China	Quails	Clinical trial	12 male quails divided into 6 groups	Crocetin	25, 50, 100 mg/kg/ day	9 weeks	Inhibit plaque formation and reduce triglycerides, total cholesterol and LDL	 (i) Reduced serum – malondialdehyde. (ii) Improvement in intima lesions and the formation of fibroblast like cells. (iii) Improve nitric oxide production. 	Crocetin significantly reduced atherosclerosis lesion.
CVD	SiyavashJoukar, 2013; Iran	Male Wistar rats aged 3 months	Clinical trial	41 rats	Saffron aqueous extract	50, 100 and 200 mg/kg/ day for three case group	7 days	Reduced pressure rate and mean arterial pressure	 (i) Before induction of ischemia, no differences observed in systolic, diastolic and mean arterial pressure. (ii) Corrected QT was significantly increased in case group (p<0.0001). 	Saffron has potent anti-arrhythmic effect which can be used for treating cardiac arrhythmic and protect from reperfusion-induced lethal cardiac arrhythmias.
CVD	EyupAltinoz, 2015; Turkey	Female Wistar rats	Clinical trial	30 rats divided into 3 groups	Crocin	20 mg/kg/ day	21 days	Crocin reduced cardiovascular complications due to diabetes	 (i) Significantly reduced malondialdehyde level (p<0.05). (ii)Remarkably reduced total cholesterol, TG and VLDL. (iii)Lowered histopathological damage in heart tissue. 	Crocin can be used for reducing diabetes induced cardiovascular complication.
CVD	Ei. Christodoulou, 2017; Greece	Wild-type and <i>apo-e-</i> /-mice	Clinical trial	50 male mice with high fat diet	Saffron aqueous extract (crocin and safranal)	30,60 and 90 mg/kg for three saffron groups	16 weeks	Reduced triglycerides level	 (i)No significant difference in lipid levels between saffron groups and control groups. (ii) Lowered microphages content and increased smooth muscle cells (SMCs) with atherosclerosis plaque (P<0.001) 	Saffron extraction can be used to treat atherosclerosis and prevent cardiovascular disease.
CVD	MojtabaMohamadpour, 2020, Iran	Adult Wistar rats	Clinical trial	30 rats	Hydroalcoholic extract of saffron petal	100, 200, 300mg/kg/day	8 weeks	Improved the lipid profile	 (i)Increased HDL-C and reduced LDL-C, cholesterol. (ii) Increased inflammatory indicators (TNF-α and IL-6) and reduced CRP and fibrinogen. 	Saffron can reduce the increasing of lipid profile as well as lipid per- oxidation.
CVD	Saeed Gudarzi, 2020, Iran	Human	A randomized controlled trial	40 patients with acute ischemic stroke	Saffron capsule	200mg twice a day	4 days	Significantly reduced the severity of stroke	(i)Increased antioxidant activities and levels of glutathione and total antioxidant capacity	Saffron can be effective for ischemic stroke by increasing reduced antioxidant levels and attenuating lipid per-oxidation.

CVD	Abazar Parsi, 2019, Iran	Human	Randomized	60 patients	Crocin	15mg/day	8weeks	Improved lipid profile	(i)Significant decreas	e in	Crocin can	be effectiv	e for non-
			placebo-	with fatty					triglycerides compared	with	alcoholic fatt	y liver diseas	se
			controlled trial	liver disease					control (p=0.002)				
									(ii)Decreased AST ar	d ALT			
									concentrations sign	ficantly.			
									(p<0.05)				

Table 2: Summary of published data relating to the effect of saffron and its constituents on hypertension (HTN)

NCDs	Author, country,	Model	Study design	Subjects	Intervention	Doses used	Duration	Main outcomes	Other findings	Comments
	and references			enrolled						
HTN	Mohsen	Male Wistar	Clinical trials	36 rats	Aqueous extract,	Extract:2.5, 5, 10;	5 weeks	Administration of aqueous	(i)The hypertensive effect of	Saffron can be used as a
	Imenshahidi,	rats (250-		(18 in case and	crocin and	crocin: 50, 100, 200;		extract, crocin and safranal	aqueous extract, crocin and	therapeutic agent for
	2010;	300 g)		18 in control)	safranal	safranal: 0.25, 0.5,		reduced mean arterial blood	safranal were higher among	hypertension and safranal is more
	Iran					mg/kg		pressure	hypertensive group.	active than crocin for treating
									(ii) Heart rate was reduced	hypertension.
									among all group but not	
									significant.	
HTN	Mohsen	Adult male	Clinical trials	42 rats divided	Ethanol	50, 100 and	11	Decreased mean systolic	(i)Effect of crocin was dose	Chronic administration of crocin
	Imenshahidi,	Wistar rats		in 7 groups	extraction	200mg/kg/ day	weeks	blood pressure (MSBP) in	dependent.	from saffron extraction reduced
	2013;	(weight 250–			(crocin)	crocin		hypertensive group, not in	(ii)After stopping	MSBP.
	Iran	300 g)						normotensive group	administration, SBP increased	
									again.	
HTN	Mohsen	Adult male	Clinical trials	42 rats divided	Saffron aqueous	10, 20 and 40	5 weeks	Reduced hypertension in	(I)Effect of aqueous extract	Hypertension can be reduced by
	Imenshahidi,	Wistar rats		in 7 groups	extract	mg/kg/ day		hypertensive groupnot in	higher at high dose.	chronic administration of saffron
	2013;	(250–300 g)						normotensive group	(ii)After stopping	aqueous extract.
	Iran								administration, SBP increased	
									again.	
HTN	ZohrehNasiri,	Male Wister	Clinical trial	28 rats divided	Saffron extract	200 mg/kg/ day	5 weeks	Prevents increased blood	(i)Saffron had no effect on	Saffron might be useful for
	2015;	rats		into 4 groups				pressure and had effect on	systolic BP in normal rats.	treating hypertension.
	Iran							hypertensive group	(ii)Reduction in aortic cross-	
									sectional area, the tunica	
									media thickness and the	
									number of elastic lamellae.	
HTN	PariaAzimi,	Human	Parallel,	208 with type-2-	Saffron in black	1g/3 weeks	3 weeks	No significant difference in	Significant reduction observed	Consumption of saffron does not
	2016;		randomized, single-	diabetes (42	tea			SBP (p=0.36) and DBP	on intercellular adhesion	affect the blood pressure, a risk
	Iran		blind placebo	people for				(p=0.60)	molecule-1 (ICAM-1) (p=0.01).	factor for cardiovascular disease.
			controlled	saffron trial)						
			Clinical trial							

Table 3: Summary of published data relating to the effect of saffron and its constituents on renal disease

NCDs	Author, country, and	Model	Study design	Subjects	Intervention	Doses used	Duration	Main outcomes	Other findings	Comments
	references			enrolled						
Renal disease	MarjanAjami, 2010;	Male Wistar	Clinical trial	48 rats	Aqueous extract of	40 or 80 mg/kg/	10 days	Saffron reduced	(i)Gentamicin-induced	Saffron extract having a
	Iran	rats (200-		divided into	saffron	day		gentamicin-induced	nephrotoxicity significantly	potent reno-protective
		250g)		six groups				increases in blood	reduced at administration of	effect
								nitrogen urea, serum	saffron 80 mg/kg /day.	reducedgentamicin-
								creatinine and	(ii)Gentamicin-induced	induced nephrotoxicity
								histological	tissue injury reduced at	and lipid peroxidation.
								Scores	administration of saffron 40	
									and 80 mg/kg /day (p<0.05).	
									(iii) Effect dose dependent.	
Renal disease	Bahareh Amin, 2015;	Male Wistar	Clinical trial	66 rats	Saffron aqueous	25, 50 and 100	30 days	Prevent kidney stone	(i)Reduced the increase in	Aqueous extract of
	Iran	rats		divided into	extract	mg/kg/day			urinary oxalate excretion	saffron can be used as
				11 groups					(p<0.001)	effective therapy in the
									(ii)Prevent loss of protein	kidney stone
									(p<0.05).	management.
									(iii)Reduced	
									melondialdehyde and	
									urinary citrate excretion.	
Renal disease	Masoumeh Zarezadeh,	Male	Clinical trials		Ethanol extract of	100 or 200 mg/	28 days	Reduction in fasting	Changes in the membrane of	Saffron extract reduced
	2017;	Wistar rats			sattron	kg/ day		blood glucose, urine	bowman's capsule,	extracellular matrix
	Iran	(180-200 g)						volume and blood	sclerosis, mesangial	accumulation and the
								nitrogen urea	Matrix expansion.	risk of diabetic
										nephropathy.
Renal disease	Alireza Milajerdi, 2017;	Human	Randomized and	54 T2DM	Hydro-alcoholic	15 mg twice a	8 weeks	Significantly decreased	(i)Non-significantly	Renal protection in T2D
	Iran		double-blind	patients	stigma	day		uric acid and blood	decreased Alanine Amino	patients can be
			clinical		extract of saffron			nitrogen urea (P<0.05)	Transferase (ALT) (p=0.67)	improved by saffron
			Trial						andAspartate Amino	treatment which had
									Transferase (AST) (p=96).	effect on renal and liver
									(ii)Non-significantly	functions.
									decreased SBP (p=0.39) and	
									DBP (p=0.81).	
									(iii)No change in creatinine	
									concentration.	

Table 4: Summary of published data relating to the effect of saffron and its constituents on cancer

NCDs	Author, country,	Model	Study	Subjects enrolled	Intervention	Doses used	Duration	Main outcomes	Other findings	Comments
	and references		design							
Cancer	lla Das, 2004; India	Swiss Albino mice	Clinical trial	24 mice	Saffron aqueous infusion	50-500 mg/kg	2 -12 weeks	Saffron inhibits skin carcinogenesis	(i)Reduction in incidence of skin papillomas. (ii)Inhibition of lipid peroxidation. (iii)Increased activity of enzyme catalase.	Further experiments should be required to establish the anti- carcinogenesis role of saffron.
Cancer	Venkatraman Magesh, 2006; India	Male Swiss albino mice	Clinical trial	30 mice divided into 5 groups	Crocetin	20 mg/ kg	4 weeks	Crocetin reduced tumour progression in lung cancer bearing animals	 (i)Significantly decreased lipid peroxidation in liver and lung (p<0.05). (ii)Activities of antioxidant enzymes returned to near normal levels. 	Crocetin has a strong antitumour effect against lung cancer.
Cancer	Animesh Dhar, 2009; India	Athymic female mice	Clinical trial	12 mice divided into 2 groups	Crocetin	4 mg/kg /day	30 days	Crocetin has anti-tumour effect against pancreatic cancer	 (i)Significantly inhibited the pancreatic cancer cell proliferation (p<0.01). (ii)Significantly increased of Bax/Bcl-2 ratio. 	Crocetin can be used to treat pancreatic cancer for its anti- tumorigenic effect.
Cancer	Alireza Timcheh Hariri, 2011; Iran	Male Wistar rats	Clinical trial	96 rats divided into 16 groups	Crocin and safranal	Crocin-50, 100 and 200 mg/kg/ day and safranal- 0.025, 0.05, and 0.1 ml/kg/ day	4 weeks	Reduced diazinon toxicity but not prevent it	(i)Reduced RBC cholinesterase activity. (ii)Increased platelets counts. (iii)Increased micronucleus number at safranal high doses.	Crocin and safranal reduced diazinon toxicity but not decrease genotoxicity of diazinon.
Cancer	S. Zahra Bathaie, 2013; Iran	Albino Wistar rats	Clinical trial	50 rats divided into 2 groups (control, 10; case,40)	Saffron aqueous extract	100, 150, 175 mg/kg/ day	50 days	Gastric cancer progression inhibited by saffron aqueous extract	 (i)Disruption in normal cell circle was changed by SAE doses. (ii)Decreased serum LDH levels. (iii)Effect dose dependent. 	SAE treatment changed antioxidant capacity of plasma, serum LDH levels and total protein in tumour tissue.

 Table 5: Summary of published data relating to the effect of saffron and its constituents on diabetes

NCDs	Author, country, and	Model	Study design	Subjects	Intervention	Doses used	Duration	Main outcomes	Other findings	Comments
	references			enrolled						
Diabetes	Kianbakht S, 2011;	Male	Clinical trial	110 rats	Saffron extract,	Saffron extract:80,	6 weeks	Saffron has anti-	(i)Safranal and crocin	More studies required to explain the
	Iran	adult		divided into	crocin, safranal	240mg/kg; Crocin: 50,		hyperglycemic effect	significantly reduced blood	mechanisms of saffron extract, crocin
		Wistar		11 groups		150 mg/kg; safranal:		and increased blood	glucose (p<0.01).	and safranal in reducing blood
		rats				0.25, 0.5 ml/kg		insulin level	(ii)Blood HbA1c level reduced	glucose and increasing insulin level.
						_			by safranal and crocin	
									(p<0.01).	
									(iii) Saffron, crocin and	
									safranal did not have effect	
									on creatinine levels.	
Diabetes	Joanna Bajerska, 2013;	Male	Clinical trial	24 rats	Saffron powder	80mg/ kg	35 days	Saffron powder alone	(i)Increased pancreas mass	Decreased glucose and triglyceride
	Poland	Wistar		divided into		0. 0		has anti-diabetic effect	and improve β -cell function.	level and increased insulin secretion,
		rats		4 groups					(ii)Reduced fasting blood	however human studies needed to
				0					glucose after 5 weeks of	evaluate effect.
									treatment.	
Diabetes	Saeed Shirali. 2013:	Neo-natal	Clinical trial		Crocin	50 and 100 mg/kg	5	Decreased serum	(i)Significantly decreased	Crocin having antidiabetic activity
	Iran	male					months	glucose and blood	triglycerides and LDL-c and	had no toxic effects and reduced
		Wistar						HbA1c	increase HDL-c (P<0.001).	mortality.
		rats							(ii)Significantly decreased	,
									microalbuminuria as an index	
									of kidney function (p<0.001).	
Diabetes	Saeed Samarghandian,	Male	Clinical trial	50 rats	Saffron	20, 40, 80 mg/kg/ day	4 weeks	Reduced blood glucose	(i)Significantly decreased	Saffron can be used as an anti-
	2014;	Wister		divided into	aqueous			level and cholesterol	serum TNF-α (p<0.001)	diabetic herbal drug.
	Iran	albino rats		5 groups	extract			level	(ii)Reduced total lipids,	
				<u> </u>					triglycerides and LDL.	
									(iii)Dose dependent.	
Diabetes	lliassLahmass, 2017;	male	Clinical trial	30 rats	Saffron crude	120 mg/kg	105 days	Reduced blood glucose	(i)Saffron reduced creatinine	Saffron has curative and protective
	Morocco	Wistar		divided into	extract			and creatinine level	level but not have significant	effect against tartrazine induced
		rats		5 groups					effect on blood glucose.	diabetes and can be used a
				<u> </u>					(ii)In tartrazine + saffron	therapeutic agent.
									group, creatinine level	
									significantly increased.	
Diabetes	Saeed Samarghandian,	Male	Clinical trial	45 rats	Saffron	10, 20 and 40 mg/kg/	4 weeks	Decreased blood	(i)Reduced total cholesterol,	Saffron can be used as an effective
	2017;	Wisterrats		divided into	aqueous	day		glucose level and body	total lipids, LDL-c and	therapy for diabetes mellitus.
	Iran			5 groups	extract			weight	increase HDL-c (p<0.05).	
									(ii)Increased activities of	
									glutathione level, catalase	
									and superoxide dismutase.	

Diabetes	ArmaghanMoravejAleali,	Human	Randomized		64 patients	Hydro-	30 mg saffron/ day as a	3	Reduced	d fasting p	olasma	(i)Significantly reduced total	Saffron improve hyperglycemia and
	2019;		double	blind	with type 2	alcoholic	two capsule	months	glucose	and	blood	cholesterol, LDL-c level and	lipid profile though further studies
	Iran		clinical trial		diabetes	saffron extract			HbA1c			LDL/HDL ratio (p<0.0001).	needed.
												(ii)Differences in insulin level	
												was not significant (p=0.296).	
Diabetes	Majid Mobasseri, 2020,	Human	Randomized		60 patients	Saffron powder	100mg/day	8 weeks	Modulat	tes glucos	e level	(i)Significantly reduced both	To suggest saffron as a alternative
	Iran		double-blind		with type-2				and	inflamr	nation	systolic and diastolic blood	therapy, long-term clinical trials with
			placebo-		diabetes				status			pressure.	each active components are
			controlled tri	al								(ii) Reduced the	necessary.
												concentration of serum IL-6	
												and TNF-α.	
												(iii) Decreased mRNA	
												expression levels of IL-6 and	
												TNF-α.	

Table 6: Summery of published data relating to the effect of saffron and its constituents on obesity

NCDs	Author, country,	Model	Study design	Subjects	Intervention	Doses used	Duration	Main outcomes	Other findings	Comments
	and references			enrolled						
Obesity	Bernard Gout,	Human	Randomized,	60; (31 in	Satiereal (dried	176.5 mg/day	8 weeks	Reduced body weight	(i)No changes in body composition.	Satiereal can be used as a
	2010;		double-blind,	satiereal	saffron stigma			and snacking	(ii)Slightly decreased in thigh	supplement in weight loss
	France		placebo-controlled,	group and 29	extract)				circumference.	program.
			parallel-group	in placebo					(iii)Improvement in hunger and	
			study	group)					snacking dimensions.	
Obesity	Maryam	Male Sprague	Clinical trial	42 rats	Saffron ethanolic	40 or 80 mg/kg	8 weeks	Both saffron extract	(i)Triglycerides levels significantly	Crocin has great anti-
	Mashmoul,	Dawley (SD)		divided into 7	extract and crocin	of saffron		and crocin decrease	reduced.	obesity effect than saffron
	2014;	rats		groups		extract and		food consumption and	(ii)Effectively reduced LDL/HDL ratio	extract and their
	Malaysia					crocin		body weight gain	as an atherogenic index.	combination can be used
									(iii)Significantly increased plasma	as a effective anti-obesity
									ghrelin and adiponectin level and	drug.
									decreased plasma leptin and $TNF-\alpha$	
									level (p<0.05).	
Obesity	Kianbakht S,	Adult male	Clinical trial	100 rats	Saffron extract and	Saffron: 25, 50,	2 months	Reduced body weight,	Reductions of body weight, food	Saffron having anti-
	2015;	Wistar rats		divided into	crocin	100 and 200		food intake and leptin	take and leptin level could be	obesity and anorectic
	Iran			10 groups		mg/kg;		level	compared to sibutramine.	effects lowered the leptin
						crocin:5,15, 30,				level which increases
						50 mg/kg				insulin sensitivity and
										reduces fat mass.

Obesity	Nasim	Human	Randomized,	84 patients	Saffron aqueous	30 mg of SAE	8 weeks	Both SAE and crocin	(i)Significantly decreased dietary	Both SAE and crocin had
	Abedimanesh,		double-blind and	with coronary	extract and crocin	and crocin		decreased body fat	and energy intake (p=0.046 and	anti-obesity effect and
	2017;		placebo controlled	artery disease				mass, waist	p<0.001).	study with larger sample
	Iran		trial					circumference and BMI	(ii)Decreased feeling of hunger and	size was recommended.
									increased feeling of fullness and	
									satiety.	
									(iii) Activity of saffron was more	
									than crocin.	

Table 7: Quality assessment of randomized controlled trials

Author, Year	Randomization	Blinding	Withdrawals or dropouts	Total points
Pariaet al, 2016	2	0	1	3
Alireza et al, 2017	2	2	1	5
Bernard et al, 2010	2	2	1	5
Nasim <i>et al</i> , 2017	2	2	1	5
Armaghan <i>et al</i> , 2019	2	2	1	5
Mobasseriet al, 2020	2	2	1	5
Gudarziet al, 2020	2	2	0	4
Parsi et al, 2019	2	2	1	5

Table 8: The CAMARADES quality items (Animal studies)

Study	1	2	3	4	5	6	7	8	9	10	Total
He et al, 2007	Y	Y	Y				Y	Y		Y	6
Joukaret al, 2013	Y	Y	Y				Y	Y	Y	Y	7
Altinozet al, 2015	Y	Y					Y	Y	Y	Y	6
Christodoulou et al, 2017	Y	Y	Y				Y	Y	Y	Y	7
Mohamadpouret al, 2020	Y	Y	Y		Y		Y	Y	Y	Y	8
Imenshahidi <i>et al</i> , 2010	Y	Y	Y				Y	Y		Y	6
Imenshahidiet al, 2013	Y	Y	Y				Y	Y		Y	6
Imenshahidiet al, 2013	Y	Y					Y	Y	Y	Y	6

Nasiriet al, 2015	Y	Y			Y	Y		Y	5
Ajamiet al, 2010	Y	Y	Y		Y	Y		Y	6
Amin <i>et al,</i> 2015	Y	Y	Y		Y	Y	Y	Y	7
Zarezadehet al, 2017	Y	Y	Y		Y	Y		Y	6
Das et al, 2004	Y	Y		Y	Y	Y		Y	6
Magesh <i>et al,</i> 2006	Y	Y			Y	Y		Y	5
Dhar <i>et al</i> , 2009	Y	Y	Y		Y	Y	Y	Y	7
Hariri et al, 2011	Y	Y	Y		Y	Y		Y	6
Bathaieet al, 2013	Y	Y			Y	Y		Y	5
Kianbakht S et al, 2011	Y	Y	Y		Y	Y		Y	6
Bajerska <i>et al</i> , 2013	Y	Y			Y	Y	Y	Y	6
Shiraliet al, 2013	Y	Y	Y		Y	Y	Y	Y	7
Samarghandianet al, 2014	Y	Y	Y		Y	Y	Y	Y	7
Lahmasset al, 2017	Y	Y			Y	Y	Y	Y	6
Samarghandianet al, 2017	Y	Y	Y		Y	Y	Y	Y	7
Mashmoulet al, 2014	Y	Y	Y		Y	Y		Y	6
Kianbakht S <i>et al,</i> 2015	Y	Y	Y		Y	Y		Y	6

(1) peer reviewed publication; (2) presence of randomization of subjects into treatment groups; (3) assessment of dose-response relationship; (4) blinded assessment of behavioural outcome; (5) monitoring of physiological parameters such as body temperature; (6) calculation of necessary sample size to achieve sufficient power; (7) statement of compliance with animal welfare regulations; (8) avoidance of anaesthetic agents with marked intrinsic neuroprotective properties (e.g., ketamine); (9) statement of potential conflict of interests; (10) use of a suitable animal model.

Table 9: Quality assessment of included studies (Animal studies)

Study quality	He et	Joukaret	Altinoz <i>et</i>	Christodoulou	Mohamadpouret	Imenshahidiet	Imenshahidiet	Imenshahidiet	Nasiri <i>et</i>	Ajamiet	Amin	Zarezadeh <i>et</i>
	al,	al, 2013	al, 2015	et al, 2017	al, 2020	al, 2010	al, 2013	al, 2013	al, 2015	al, 2010	et al,	al, 2017
	2007										2015	
Research question specified and	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
clear?												
Outcome measures relevant for AD	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
research												
Are the characteristics of study												
population clear?												
Species	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	Y	Y
Background/generation	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Sex	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Age	Y	Y	Ν	Y	Ν	N	N	N	Ν	Ν	Ν	N

Presence and correct control	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
group?												
Where the groups similar at	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
baseline (if not randomized think of												
weight and sex etc.)?												
Is the experiment randomized?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ
Kind of supplement mentioned	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
(saffron, crocin, crocetin, saffranal)?												
Age when supplementation started	Y	Y	N	Y	N	Ν	N	N	N	N	Ν	Ν
mentioned?												
Duration of supplementation clear	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
and specified?												
Amount of saffron mentioned	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Administration route specified	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ
Is the timing of the	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
supplementation during the day												
specified and similar in both												
groups?												
Methods used for outcome	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
assessment the same in both												
groups?												
Did report animals who died or	N	Y	N	Ν	N	Ν	N	N	N	N	N	N
were otherwise removed from the												
study												
Blinded outcome assessment?	N	N	N	N	N	N	N	N	N	N	Ν	N
Was the outcome assessment	Ν	N	N	Ν	N	N	N	N	N	N	N	N
randomized across the groups?												
Total number of animals included in	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
statistical analyses clear?												
Age of sacrificing animals	Y	Y	Y	Ν	Ν	Ν	Y	N	Ν	N	N	Ν
mentioned?												
Quality Score	18	19	15	17	15	15	16	15	15	15	15	15

Y= filling the criteria, N= Not filling the criteria

Table 9: Quality assessment of included studies (Animal studies), Continue

Study quality	Das et	Magesh et	Dhar et	Hariri et	Bathaie <i>et</i>	Kianbakht S	Bajerska <i>et</i>	Shirali <i>et</i>	Samarghandianet	Lahmass <i>et</i>	Samarghandianet	Mashmoul <i>et</i>	Kianbakht S
	al, 2004	al, 2006	al, 2009	al, 2011	al, 2013	et al, 2011	al, 2013	al, 2013	al, 2014	al, 2017	al, 2017	al, 2014	et al, 2015
Research question specified and clear?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Outcome measures relevant for AD research	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y

Are the characteristics of study population													
clear?													
Species	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Background/generation	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	Y	Y
Sex	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Age	Y	N	Ν	N	N	Ν	Y	Y	N	N	N	Ν	Ν
Presence and correct control group?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Where the groups similar at baseline (if not randomized think of weight and sex etc.)?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Is the experiment randomized?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Υ
Kind of supplement mentioned(saffron, crocin, crocetin, saffranal)?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Age when supplementation started mentioned?	Y	Ν	N	N	Ν	N	Y	Y	N	N	Y	Ν	Ν
Duration of supplementation clear and specified?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Amount of saffron mentioned	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Administration route specified	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Is the timing of the supplementation during the day specified and similar in both groups?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Methods used for outcome assessment the same in both groups?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Did report animals who died or were otherwise removed from the study	N	N	N	N	N	N	N	N	N	N	N	N	N
Blinded outcome assessment?	Ν	Y	Ν	Ν	Ν	Ν	N	Ν	Ν	N	Ν	Ν	Ν
Was the outcome assessment randomized across the groups?	N	N	N	N	N	N	N	N	Ν	N	Ν	N	N
Total number of animals included in statistical analyses clear?	Y	Y	Y	Y	Y	Υ	Y	Y	Y	Y	Y	Υ	Υ
Age of sacrificing animals mentioned?	Y	N	N	N	N	Ν	N	Y	N	N	Ν	Ν	Ν
Quality Score	17	16	15	15	15	15	17	18	15	15	16	15	15

Crocus sativus L and renal disease

Saffron and its constituents may reduce and inhibit several types of renal disease such as kidney stones, nephrotoxicity, renal ischemiareperfusion, etc. Antioxidant activity of saffron may reduce lipid peroxidation products and prevents renal diseases ¹⁸. Saffron is a medicinal herb with lower toxicity on normal body cells ⁴³. Another mechanism about kidney stone and saffron showed that oxalic acid metabolism and hyperoxaluria can be reduced by saffron administration which are risk factors of kidney stone formation ⁴⁴. Saffron and its compounds also reduced the development of renal failure and oxidative stress ⁴⁵. Melondialdehyde (MDA) content increases the lipid peroxidation which was lowered by administration of saffron extract and also helps to prevent renal damage induced by lipid peroxidation ¹⁸, ⁴⁶.

Crocus sativus L and cancer

Several types of hypotheses have been proposed to describe the modes of anti-cancer and anti-tumor effects of saffron. A mechanism stated that saffron has inhibitory effects on free radical reactions and cellular DNA and RNA synthesis which may inhibit cancer or tumor progression ⁴⁷. Another study stated that saffron contains lectins that have antitumor activity ⁴⁸. Some studies reported that saffron and its components inhibit the activity of different types of cellular enzymes which may be associated with anticancer and antitumor activity of saffron ^{49, 50}. Our study findings stated that cell proliferation of different types of cancer could be inhibited with the administration of saffron through its antioxidant activity ^{51, 52}. Another study found that carotenoids of saffron improve cell to cell communication and prevent the proliferation of cancer cells ⁵³.

Crocus sativus L and diabetes

The hypoglycemic effects of saffron and its constituents are pretended by many mechanisms such as stimulation of glucose uptake by peripheral tissue⁵⁴, inhibits insulinase activity and glucose absorption by intestine⁵⁵, increase insulin secretion by stimulating β -cells of islets of Langerhans, etc ⁵⁶. Saffron and its components increase insulin level, HDL-C, GSH, SOD, and CAT and reduce glucose levels, total lipids, total cholesterol, total triglycerides, LDL-C, and NO following the above mechanism to have effects on diabetes and its complications ⁵⁷. Another mechanism described in at in-vitro study that saffron improved glucose uptake and the phosphorylation of AMP-activated protein kinase (AMPK) which plays a role in glucose uptake and insulin sensitivity ⁵⁸. The results of this study found that saffron reduced the serum glucose level and increased the insulin level by regeneration of β -cell of the pancreas ^{59, 60}.

Crocus sativus L and obesity

All components of saffron especially crocin, crocetin, and safranal are attributed to potential anti-obesity effects. Some studies described the mechanism of the anti-obesity effect of saffron^{61, 62}. Although the mechanism of saffron on reducing body weight is not clear, saffron directly or indirectly reduce body weight by increasing satiety, reducing food intake, decreasing dietary fat digestion via inhibiting pancreatic

lipase, increasing lipid and glucose metabolism and inhibiting inflammatory cytokines ⁶³. This study finding found that body weight was significantly decreased among the saffron group. Some studies evaluated that plasma leptin was also lowered among the saffron group ^{14, 64}. Other studies demonstrated that body mass index, waist circumference, and fat mass decreased on saffron administration ^{65, 66}. Energy and dietary intake were also reduced along with decreasing the feeling of hunger (p<0.05) ⁶⁶.

Strengths and limitations

The strengths of the following review are: covered most common noncommunicable diseases and the effects of saffron on them. Another strong point of this review is assessing the quality of all included studies that may help to reduce possible publication bias.

The recent review is not without limitations. We only included those articles which were published in English language and had full text availability.

CONCLUSION

This review highlights the effects of saffron and its main constituents on common non-communicable diseases such as cardiovascular disease, hypertension, cancer, renal disease, diabetes, and obesity. Saffron and its constituents show the beneficial effects of many diseases. It acts as a multipotential drug. Saffron extract and its biologically active components including crocin, crocetin, and safranal show a wide variety of different biological effects and antioxidant properties are one of the biggest parts of them which affect preventing many diseases. Reviewed studies indicated that consumption of saffron lowered the risk of noncommunicable diseases. However, scientific toxicity or safety of saffron doses is not clear, and more human studies are required to determine the toxic effects and effective dose of saffron. In summary, this review suggests that saffron can be used as an effective therapeutic drug although well-designed clinical trials are needed to confirm the effective use of saffron as a drug for the treatment of non-communicable diseases.

Conflict of Interest

None declared.

Financial support and sponsorship

Nil.

References

1. WHO. *Preventing chronic diseases: a vital investment: WHO global report*. World Health Organization, 2005.

2. Engelgau MM, El-Saharty S, Kudesia P, Rajan V, Rosenhouse S and Okamoto K. *Capitalizing on the demographic transition: tackling noncommunicable diseases in South Asia.* The World Bank, 2011.

3. WHO. Non-communicable disease fact sheet. 2015.

4. Hay SI, Abajobir AA, Abate KH, et al. Global, regional, and national disabilityadjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. *The Lancet*. 2017; 390: 1260-344.

5. WHO. The World health report: **Today's challenges**. Geneva, World Health Organization.

6. Gupta RK, Kesari AN, Murthy P, Chandra R, Tandon V and Watal G. Hypoglycemic and antidiabetic effect of ethanolic extract of leaves of Annona squamosa L. in experimental animals. *Journal of ethnopharmacology*. 2005; 99: 75-81.

7. Ahangarpour A, Heidari H, Fatemeh RAA, et al. Effect of Boswellia serrata supplementation on blood lipid, hepatic enzymes and fructosamine levels in type2 diabetic patients. *Journal of Diabetes & Metabolic Disorders*. 2014; 13: 29. 8. Neelakantan N, Narayanan M, de Souza RJ and van Dam RM. Effect of fenugreek (Trigonella foenum-graecumL.) intake on glycemia: a meta-analysis of clinical trials. *Nutrition journal*. 2014; 13: 7.

9. Hosseinzadeh H. Saffron: a herbal medicine of third millennium. *Jundishapur journal of natural pharmaceutical products*. 2014; 9: 1.

10. Schmidt M, Betti G and Hensel A. Saffron in phytotherapy: pharmacology and clinical uses. *Wiener Medizinische Wochenschrift*. 2007; 157: 315.

11. Milajerdi A, Jazayeri S, Hashemzadeh N, et al. The effect of saffron (Crocus sativus L.) hydroalcoholic extract on metabolic control in type 2 diabetes mellitus: A triple-blinded randomized clinical trial. *Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences*. 2018; 23.

12. Mard SA, Pipelzadeh MH, Teimoori A, et al. Protective activity of crocin against indomethacin-induced gastric lesions in rats. *Journal of natural medicines*. 2016; 70: 62-74.

13. Gismondi A, Serio M, Canuti L and Canini A. Biochemical, antioxidant and antineoplastic properties of Italian saffron (Crocus sativus L.). *American Journal of Plant Sciences*. 2012; 3: 1573.

14. Mashmoul M, Azlan A, Yusof BNM, Khaza'ai H, Mohtarrudin N and Boroushaki MT. Effects of saffron extract and crocin on anthropometrical, nutritional and lipid profile parameters of rats fed a high fat diet. *journal of functional foods*. 2014; 8: 180-7.

15. Tarantilis PA, Morjani H, Polissiou M and Manfait M. Inhibition of growth and induction of differentiation of promyelocytic laukemia (HL 60) by carotenoids from. *Anticancer Research*. 1994; 14: 1913-8.

16. Abdullaev F and Espinosa-Aguirre J. Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. *Cancer Detection and prevention*. 2004; 28: 426-32.

17. Karimi-Nazari E, Nadjarzadeh A, Masoumi R, et al. Effect of saffron (Crocus sativus L.) on lipid profile, glycemic indices and antioxidant status among overweight/obese prediabetic individuals: A double-blinded, randomized controlled trial. *Clinical nutrition ESPEN*. 2019; 34: 130-6.

18. Ajami M, Eghtesadi S, Pazoki-Toroudi H, Habibey R and Ebrahimi SA. Effect of crocus sativus on gentamicin induced nephrotoxicity. *Biological research*. 2010; 43: 83-90.

19. Imenshahidi M, Razavi BM, Faal A, Gholampoor A, Mousavi SM and Hosseinzadeh H. Effects of chronic crocin treatment on desoxycorticosterone acetate (doca)-salt hypertensive rats. *Iranian journal of basic medical sciences*. 2014; 17: 9.

20. Escribano J, Alonso G-L, Coca-Prados M and Fernández J-A. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. *Cancer letters*. 1996; 100: 23-30.

21. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? *Controlled clinical trials*. 1996; 17: 1-12.

22. Hooijmans CR, Rovers MM, De Vries RB, Leenaars M, Ritskes-Hoitinga M and Langendam MW. SYRCLE's risk of bias tool for animal studies. *BMC medical research methodology*. 2014; 14: 43.

23. Hooijmans CR, Leenaars M and Ritskes-Hoitinga M. A gold standard publication checklist to improve the quality of animal studies, to fully integrate the Three Rs, and to make systematic reviews more feasible. *Alternatives to Laboratory Animals*. 2010; 38: 167-82.

24. He S-Y, Qian Z-Y, Wen N, Tang F-T, Xu G-L and Zhou C-H. Influence of crocetin on experimental atherosclerosis in hyperlipidamic-diet quails. *European journal of pharmacology*. 2007; 554: 191-5.

25. Altinoz E, Taskin E, Oner Z, Elbe H and Arslan BA. The effect of saffron (its active constituent, crocin) on the cardiovascular complication and dyslipidemia in streptozotocin induced diabetic rats. *African Journal of Traditional, Complementary and Alternative Medicines*. 2015; 12: 1-7.

26. Christodoulou E, Kadoglou N, Stasinopoulou M, et al. Crocus sativus L. aqueous extract reduces atherogenesis, increases atherosclerotic plaque stability and improves glucose control in diabetic atherosclerotic animals. *Atherosclerosis*. 2018; 268: 207-14.

27. Joukar S, Ghasemipour-Afshar E, Sheibani M, Naghsh N and Bashiri A. Protective effects of saffron (Crocus sativus) against lethal ventricular arrhythmias induced by heart reperfusion in rat: a potential anti-arrhythmic agent. *Pharmaceutical biology*. 2013; 51: 836-43.

28. Moustardas P, Kadoglou NP, Katsimpoulas M, et al. The complementary effects of atorvastatin and exercise treatment on the composition and stability of the atherosclerotic plaques in ApoE knockout mice. *PloS one*. 2014; 9: e108240.

29. Wang X, Chen Q, Pu H, et al. Adiponectin improves NF- κ B-mediated inflammation and abates atherosclerosis progression in apolipoprotein E-deficient mice. *Lipids in health and disease*. 2016; 15: 1-14.

30. Gluba-Brzózka A, Michalska-Kasiczak M, Franczyk B, et al. Markers of increased atherosclerotic risk in patients with chronic kidney disease: a preliminary study. *Lipids in health and disease*. 2016; 15: 22.

31. Centurión OA. Serum biomarkers and source of inflammation in acute coronary syndromes and percutaneous coronary interventions. *Cardiovascular Revascularization Medicine*. 2016; 17: 119-28.

32. Rao VH, Rai V, Stoupa S, Subramanian S and Agrawal DK. Tumor necrosis factor- α regulates triggering receptor expressed on myeloid cells-1-dependent matrix metalloproteinases in the carotid plaques of symptomatic patients with carotid stenosis. *Atherosclerosis*. 2016; 248: 160-9.

33. Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG and Orekhov AN. Macrophages and their role in atherosclerosis: pathophysiology and transcriptome analysis. *BioMed research international*. 2016; 2016.

34. José Bagur M, Alonso Salinas GL, Jiménez-Monreal AM, et al. Saffron: An old medicinal plant and a potential novel functional food. *Molecules*. 2018; 23: 30.

35. Srivastava R, Ahmed H and Dixit R. Crocus sativus L.: a comprehensive review. *Pharmacognosy reviews.* 2010; 4: 200.

36. Boskabady Ma and Aslani M. Relaxant effect of Crocus sativus (saffron) on guinea-pig tracheal chains and its possible mechanisms. *Journal of Pharmacy and Pharmacology*. 2006; 58: 1385-90.

37. He S-Y, Qian Z-Y and Tang F-T. Effect of crocin on intracellular calcium concentration in cultured bovine aortic smooth muscle cells. 藥學學報. 2004; 39: 778-81.

38. Williams BA, Liu C, DeYoung L, Brock GB and Sims SM. Regulation of intracellular Ca2+ release in corpus cavernosum smooth muscle: synergism between nitric oxide and cGMP. *American Journal of Physiology-Cell Physiology*. 2005; 288: C650-C8.

39. Zheng S, Qian Z, Wen N and Xi L. Crocetin suppresses angiotensin II-induced vascular smooth-muscle cell proliferation through inhibition of ERK1/2 activation and cell-cycle progression. *Journal of cardiovascular pharmacology*. 2007; 50: 519-25.

40. Shafei MN, Faramarzi A, Rad AK and Anaeigoudari A. Crocin prevents acute angiotensin II-induced hypertension in anesthetized rats. *Avicenna journal of phytomedicine*. 2017; 7: 345.

41. Imenshahidi M, Razavi BM, Faal A, Gholampoor A, Mousavi SM and Hosseinzadeh H. The effect of chronic administration of saffron (Crocus sativus) stigma aqueous extract on systolic blood pressure in rats. *Jundishapur journal of natural pharmaceutical products*. 2013; 8: 175.

42. Nasiri Z, Sameni HR, Vakili A, Jarrahi M and Khorasani MZ. Dietary saffron reduced the blood pressure and prevented remodeling of the aorta in L-NAME-induced hypertensive rats. *Iranian journal of basic medical sciences*. 2015; 18: 1143.

43. Milajerdi A, Djafarian K and Hosseini B. The toxicity of saffron (Crocus sativus L.) and its constituents against normal and cancer cells. *Journal of Nutrition & Intermediary Metabolism*. 2016; 3: 23-32.

44. Fan J, Glass MA and Chandhoke PS. Impact of ammonium chloride administration on a rat ethylene glycol urolithiasis model. *Scanning Microsc.* 1999; 13: 299-306.

45. Naghizadeh B, Boroushaki MT, Vahdati MN and Mansouri M. Protective effects of crocin against cisplatin-induced acute renal failure and oxidative stress in rats. 2008.

46. Amin B, Feriz HM, Hariri AT, Meybodi NT and Hosseinzadeh H. Protective effects of the aqueous extract of Crocus sativus against ethylene glycol induced nephrolithiasis in rats. *EXCLI journal*. 2015; 14: 411.

47. Nair SC, Kurumboor S and Hasegawa J. Saffron chemoprevention in biology and medicine: a review. *Cancer Biotherapy & Radiopharmaceuticals*. 1995; 10: 257-64.

48. Abdullaev FI and Gonzalez de Mejia E. Antitumor effect of plant lectins. *Natural toxins*. 1997; 5: 157-63.

49. Kubo I and Kinst-Hori I. Flavonols from saffron flower: tyrosinase inhibitory activity and inhibition mechanism. *Journal of agricultural and food chemistry*. 1999; 47: 4121-5.

50. Nair S, Salomi M, Varghese C, Panikkar B and Panikkar K. Effect of saffron on thymocyte proliferation, intracellular glutathione levels and its antitumor activity. *BioFactors (Oxford, England)*. 1992; 4: 51.

51. Dhar A, Mehta S, Dhar G, et al. Crocetin inhibits pancreatic cancer cell proliferation and tumor progression in a xenograft mouse model. *Molecular cancer therapeutics.* 2009; 8: 315-23.

52. Bathaie SZ, Miri H, Mohagheghi M-A, Mokhtari-Dizaji M, Shahbazfar A-A and Hasanzadeh H. Saffron aqueous extract inhibits the chemically-induced gastric cancer progression in the Wistar albino rat. *Iranian journal of basic medical sciences*. 2013; 16: 27.

53. Magesh V, Singh JPV, Selvendiran K, Ekambaram G and Sakthisekaran D. Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies. *Molecular and cellular biochemistry*. 2006; 287: 127-35.

54. Yang Y-C, Hwang J-H, Hong S-J and Hsu H-K. Enhancement of glucose uptake in 3T3-L1 adipocytes by Toona sinensis leaf extract. *The Kaohsiung journal of medical sciences*. 2003; 19: 327-32.

55. Eddouks M, Maghrani M, Lemhadri A, Ouahidi M-L and Jouad H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). *Journal of ethnopharmacology*. 2002; 82: 97-103.

56. Elgazar AF, Rezq AA and Bukhari HM. Anti-hyperglycemic effect of saffron extract in alloxan-induced diabetic rats. *Eur J Biol Sci.* 2013; 5: 14-22.

57. Farkhondeh T and Samarghandian S. The effect of saffron (Crocus sativus L.) and its ingredients on the management of diabetes mellitus and dislipidemia. *African Journal of Pharmacy and Pharmacology*. 2014; 8: 541-9.

58. Kang C, Lee H, Jung E-S, et al. Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms. *Food chemistry*. 2012; 135: 2350-8.

59. Samarghandian S, Azimi-Nezhad M and Samini F. Ameliorative effect of saffron aqueous extract on hyperglycemia, hyperlipidemia, and oxidative stress on diabetic encephalopathy in streptozotocin induced experimental diabetes mellitus. *BioMed research international*. 2014; 2014.

60. Bajerska J, Mildner-Szkudlarz S, Podgórski T and Oszmatek-Pruszyńska E. Saffron (Crocus sativus L.) powder as an ingredient of rye bread: an anti-diabetic evaluation. *Journal of medicinal food*. 2013; 16: 847-56.

61. Vincent HK, Innes KE and Vincent KR. Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. *Diabetes, obesity and metabolism.* 2007; 9: 813-39.

62. Abete I, Goyenechea E, Zulet M and Martinez J. Obesity and metabolic syndrome: potential benefit from specific nutritional components. *Nutrition, metabolism and cardiovascular diseases*. 2011; 21: B1-B15.

63. Mashmoul M, Azlan A, Khaza'ai H, Yusof BNM and Noor SM. Saffron: a natural potent antioxidant as a promising anti-obesity drug. *Antioxidants*. 2013; 2: 293-308.

64. Kianbakht S and Hashem Dabaghian F. Anti-obesity and anorectic effects of saffron and its constituent crocin in obese Wistar rat. *Journal of Medicinal Plants*. 2015; 1: 25-33.

65. Gout B, Bourges C and Paineau-Dubreuil S. Satiereal, a Crocus sativus L extract, reduces snacking and increases satiety in a randomized placebocontrolled study of mildly overweight, healthy women. *Nutrition Research*. 2010; 30: 305-13.

66. Abedimanesh N, Bathaie SZ, Abedimanesh S, Motlagh B, Separham A and Ostadrahimi A. Saffron and crocin improved appetite, dietary intakes and body composition in patients with coronary artery disease. *Journal of cardiovascular and thoracic research*. 2017; 9: 200.

67. Mohamadpour M, Shahmir P, Asadi M, Asadi S and Amraei M. Investigating the Effect of Saffron Petal Extract on Antioxidant Activity and Inflammatory Markers in Hypercholesterolemic Rats. *atherosclerosis*. 7: 8.

68. Gudarzi S, Jafari M, Pirzad Jahromi G, Eshrati R, Asadollahi M and Nikdokht P. Evaluation of modulatory effects of saffron (Crocus sativus L.) aqueous extract on oxidative stress in ischemic stroke patients: a randomized clinical trial. *Nutritional Neuroscience*. 2020: 1-10.

69. Parsi A, Torkashvand M, Hajiani E, Rahimlou M and Sadeghi N. The effects of crocus sativus extract on serum lipid profile and liver enzymes in patients with non-alcoholic fatty liver disease: A randomized placebo-controlled study. *Obesity Medicine*. 2020; 17: 100165.

70. Imenshahidi M, Hosseinzadeh H and Javadpour Y. Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. *Phytotherapy Research*. 2010; 24: 990-4.

71. Azimi P, Ghiasvand R, Feizi A, et al. Effect of cinnamon, cardamom, saffron and ginger consumption on blood pressure and a marker of endothelial function in patients with type 2 diabetes mellitus: A randomized controlled clinical trial. *Blood pressure*. 2016; 25: 133-40.

72. Zarezadeh M, Vazifeshenas-Darmiyan K, Afshar M, Valavi M, Serki E and Hosseini M. Effects of extract of Crocus sativus petal on renal function in diabetic rats. *Journal of Mazandaran University of Medical Sciences*. 2017; 27: 11-24.

73. Milajerdi A, Jazayeri S, Bitarafan V, et al. The effect of saffron (Crocus sativus L.) hydro-alcoholic extract on liver and renal functions in type 2 diabetic patients: A double-blinded randomized and placebo control trial. *Journal of Nutrition & Intermediary Metabolism*. 2017; 9: 6-11.

74. Das I, Chakrabarty R and Das S. Saffron can prevent chemically induced skin carcinogenesis in Swiss albino mice. *Asian Pac J Cancer Prev.* 2004; 5: 70-6.

75. Hariri AT, Moallem SA, Mahmoudi M and Hosseinzadeh H. The effect of crocin and safranal, constituents of saffron, against subacute effect of diazinon on hematological and genotoxicity indices in rats. *Phytomedicine*. 2011; 18: 499-504.
76. Kianbakht S and Hajiaghaee R. Anti-hyperglycemic effects of saffron and its active constituents, crocin and safranal, in alloxan-induced diabetic rats. *Journal of Medicinal Plants*. 2011; 3: 82-9.

77. Shirali S, Zahra Bathaie S and Nakhjavani M. Effect of crocin on the insulin resistance and lipid profile of streptozotocin-induced diabetic rats. *Phytotherapy Research*. 2013; 27: 1042-7.

78. Lahmass I, Sabouni A, Elyoubi M, Benabbes R, Mokhtari S and Saalaoui E. Antidiabetic effect of aqueous extract Crocus sativus L. in tartrazine induced diabetic male rats. *Physiology and Pharmacology*. 2017; 21: 312-21.

79. Samarghandian S, Azimi-Nezhad M and Farkhondeh T. Immunomodulatory and antioxidant effects of saffron aqueous extract (Crocus sativus L.) on streptozotocin-induced diabetes in rats. *Indian heart journal*. 2017; 69: 151-9.

80. Moravej Aleali A, Amani R, Shahbazian H, Namjooyan F, Latifi SM and Cheraghian B. The effect of hydroalcoholic Saffron (Crocus sativus L.) extract on fasting plasma glucose, HbA1c, lipid profile, liver, and renal function tests in patients with type 2 diabetes mellitus: A randomized double-blind clinical trial. *Phytotherapy research.* 2019; 33: 1648-57.

81. Mobasseri M, Ostadrahimi A, Tajaddini A, et al. Effects of saffron supplementation on glycemia and inflammation in patients with type 2 diabetes mellitus: A randomized double-blind, placebo-controlled clinical trial study. *Diabetes & Metabolic Syndrome: Clinical Research & Reviews.* 2020.

HOW TO CITE THIS ARTICLE

Chowdhury AI, Habib MA, Ghosh S. Effect of Saffron (*Crocus sativus* L) on Common Non-Communicable Disease: Review from Current Clinical Findings. J Ayu Herb Med 2021;7(2):93-108.DOI: 10.31254/jahm.2021.7208

Creative Commons (CC) License-

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. (http://creativecommons.org/licenses/by/4.0/).